Added nba history example, and implemented kernel matern32.

This commit is contained in:
2020-02-21 11:20:03 +01:00
parent e7a2679941
commit eae717b840
4 changed files with 174 additions and 2 deletions

View File

@@ -13,6 +13,9 @@ ndarray = "0.13"
ndarray-linalg = { version = "0.12" }
openblas-src = { version = "0.8", features = ["static"] }
ordered-float = "1.0"
rand = "0.6"
rand_xoshiro = "0.1"
rand = "0.7"
rand_xoshiro = "0.4"
statrs = "0.12"
[dev-dependencies]
time = "0.2"

94
examples/nba-history.rs Normal file
View File

@@ -0,0 +1,94 @@
extern crate openblas_src;
use std::collections::HashSet;
use std::fs;
use std::io::{self, BufRead};
use kickscore as ks;
use time::Date;
fn main() -> Result<(), Box<dyn std::error::Error>> {
let reader = fs::File::open("examples/nba.csv").map(io::BufReader::new)?;
let mut teams = HashSet::new();
let mut observations = Vec::new();
let cutoff = time::date!(2019 - 06 - 01);
for line in reader.lines() {
let line = line?;
let data = line.split(',').collect::<Vec<_>>();
assert!(data.len() == 5);
let t = Date::parse(data[0], "%F")?;
if t > cutoff {
break;
}
teams.insert(data[1].to_string());
teams.insert(data[2].to_string());
if data[3].is_empty() || data[4].is_empty() {
continue;
}
let t = t.midnight().timestamp() as f64;
let score_1: u16 = data[3].parse()?;
let score_2: u16 = data[4].parse()?;
if score_1 > score_2 {
observations.push((data[1].to_string(), data[2].to_string(), t));
} else if score_1 < score_2 {
observations.push((data[2].to_string(), data[1].to_string(), t));
} else {
panic!("there shouldn't be any tie games");
}
}
let seconds_in_year = 365.25 * 24.0 * 60.0 * 60.0;
let mut model = ks::BinaryModel::new(ks::BinaryModelObservation::Probit);
for team in teams {
let kernel: Vec<Box<dyn ks::Kernel>> = vec![
Box::new(ks::kernel::Constant::new(0.03)),
Box::new(ks::kernel::Matern32::new(0.138, 1.753 * seconds_in_year)),
];
model.add_item(&team, Box::new(kernel));
}
for (winner, loser, t) in observations {
model.observe(&[&winner], &[&loser], t);
}
model.fit();
println!("Probability that CHI beats BOS...");
let (p_win, _) = model.probabilities(
&[&"CHI"],
&[&"BOS"],
time::date!(1996 - 01 - 01).midnight().timestamp() as f64,
);
println!(" ... in 1996: {:.2}%", 100.0 * p_win);
let (p_win, _) = model.probabilities(
&[&"CHI"],
&[&"BOS"],
time::date!(2001 - 01 - 01).midnight().timestamp() as f64,
);
println!(" ... in 2001: {:.2}%", 100.0 * p_win);
let (p_win, _) = model.probabilities(
&[&"CHI"],
&[&"BOS"],
time::date!(2020 - 01 - 01).midnight().timestamp() as f64,
);
println!(" ... in 2020: {:.2}%", 100.0 * p_win);
Ok(())
}

View File

@@ -2,10 +2,12 @@ use ndarray::prelude::*;
mod constant;
mod exponential;
mod matern32;
mod matern52;
pub use constant::Constant;
pub use exponential::Exponential;
pub use matern32::Matern32;
pub use matern52::Matern52;
pub trait Kernel {

73
src/kernel/matern32.rs Normal file
View File

@@ -0,0 +1,73 @@
use ndarray::prelude::*;
use super::Kernel;
#[derive(Clone)]
pub struct Matern32 {
var: f64,
l_scale: f64,
lambda: f64,
}
impl Matern32 {
pub fn new(var: f64, l_scale: f64) -> Self {
Matern32 {
var,
l_scale,
lambda: 3.0f64.sqrt() / l_scale,
}
}
}
impl Kernel for Matern32 {
fn k_diag(&self, ts: &[f64]) -> Array1<f64> {
Array1::ones(ts.len()) * self.var
}
fn order(&self) -> usize {
2
}
fn state_mean(&self, t: f64) -> Array1<f64> {
Array1::zeros(2)
}
fn state_cov(&self, t: f64) -> Array2<f64> {
let a = self.lambda;
array![[1.0, 0.0], [0.0, a * a]] * self.var
}
fn measurement_vector(&self) -> Array1<f64> {
array![1.0, 0.0]
}
fn feedback(&self) -> Array2<f64> {
let a = self.lambda;
array![[0.0, 1.0], [-a.powi(2), -2.0 * a]]
}
fn transition(&self, t0: f64, t1: f64) -> Array2<f64> {
let d = t1 - t0;
let a = self.lambda;
let ba = array![[d * a + 1.0, d], [-d * a * a, 1.0 - d * a]];
(-d * a).exp() * ba
}
fn noise_cov(&self, t0: f64, t1: f64) -> Array2<f64> {
let d = t1 - t0;
let a = self.lambda;
let da = d * a;
let c = (-2.0 * da).exp();
let x11 = 1.0 - c * (2.0 * da * da + 2.0 * da + 1.0);
let x12 = c * (2.0 * da * da * a);
let x22 = a * a * (1.0 - c * (2.0 * da * da - 2.0 * da + 1.0));
self.var * array![[x11, x12], [x12, x22]]
}
}