Added Kernel impl for tuples

This commit is contained in:
2022-04-26 22:41:13 +02:00
parent 9307c36282
commit 6f90aa8170

View File

@@ -1,3 +1,5 @@
#![allow(non_snake_case)]
use ndarray::prelude::*;
mod affine;
@@ -417,6 +419,19 @@ mod tests {
[0.3933043131476467, 0.4908539038626858, 1.7]
]
);
let kernel = (Matern32::new(1.5, 0.7), Matern52::new(0.2, 5.0));
let ts = [1.26, 1.46, 2.67];
assert_abs_diff_eq!(
kernel.k_mat(&ts, None),
array![
[1.7, 1.5667546855502472, 0.3933043131476467],
[1.5667546855502472, 1.7, 0.4908539038626858],
[0.3933043131476467, 0.4908539038626858, 1.7]
]
);
}
#[test]
@@ -433,6 +448,16 @@ mod tests {
.collect();
assert_eq!(kernel.k_mat(&ts, None).diag(), kernel.k_diag(&ts));
let kernel = (Matern32::new(1.5, 0.7), Matern52::new(0.2, 5.0));
let ts: Vec<_> = thread_rng()
.sample_iter::<f64, _>(Standard)
.take(10)
.map(|x| x * 10.0)
.collect();
assert_eq!(kernel.k_mat(&ts, None).diag(), kernel.k_diag(&ts));
}
#[test]
@@ -451,6 +476,18 @@ mod tests {
assert_eq!(kernel.noise_effect().shape()[0], m);
assert_eq!(kernel.transition(0.0, 1.0).shape(), &[m, m]);
assert_eq!(kernel.noise_cov(0.0, 1.0).shape(), &[m, m]);
let kernel = (Matern32::new(1.5, 0.7), Matern52::new(0.2, 5.0));
let m = kernel.order();
assert_eq!(kernel.state_mean(0.0).shape(), &[m]);
assert_eq!(kernel.state_cov(0.0).shape(), &[m, m]);
assert_eq!(kernel.measurement_vector().shape(), &[m]);
assert_eq!(kernel.feedback().shape(), &[m, m]);
assert_eq!(kernel.noise_effect().shape()[0], m);
assert_eq!(kernel.transition(0.0, 1.0).shape(), &[m, m]);
assert_eq!(kernel.noise_cov(0.0, 1.0).shape(), &[m, m]);
}
#[test]
@@ -474,5 +511,204 @@ mod tests {
.collect::<Vec<_>>();
assert_abs_diff_eq!(Array::from(vars), kernel.k_diag(&ts));
let kernel = (Matern32::new(1.5, 0.7), Matern52::new(0.2, 5.0));
let ts: Vec<_> = thread_rng()
.sample_iter::<f64, _>(Standard)
.take(10)
.map(|x| x * 10.0)
.collect();
let h = kernel.measurement_vector();
let vars = ts
.iter()
.map(|t| h.dot(&kernel.state_cov(*t)).dot(&h))
.collect::<Vec<_>>();
assert_abs_diff_eq!(Array::from(vars), kernel.k_diag(&ts));
}
}
macro_rules! tuple_impls {
( $( $name:ident )+ ) => {
impl<$($name: Kernel),+> Kernel for ($($name,)+) {
fn k_mat(&self, ts1: &[f64], ts2: Option<&[f64]>) -> Array2<f64> {
let n = ts1.len();
let m = ts2.map_or(n, |ts| ts.len());
let ($($name,)+) = &self;
Array2::zeros((n, m)) $(+$name.k_mat(ts1, ts2))+
}
fn k_diag(&self, ts: &[f64]) -> Array1<f64> {
let ($($name,)+) = &self;
Array1::zeros(ts.len()) $(+$name.k_diag(ts))+
}
fn order(&self) -> usize {
let ($($name,)+) = &self;
0 $(+$name.order())+
}
fn state_mean(&self, t: f64) -> Array1<f64> {
let ($($name,)+) = &self;
Array1::from_iter([$($name.state_mean(t).into_iter(),)+].into_iter().flatten().cloned())
}
fn state_cov(&self, t: f64) -> Array2<f64> {
let ($($name,)+) = &self;
let data = [$($name.state_cov(t),)+];
let dim = data
.iter()
.fold((0, 0), |(h, w), m| (h + m.nrows(), w + m.ncols()));
let mut block = Array2::zeros(dim);
let mut r_d = 0;
let mut c_d = 0;
for m in data {
for ((r, c), v) in m.indexed_iter() {
block[(r + r_d, c + c_d)] = *v;
}
r_d += m.nrows();
c_d += m.ncols();
}
block
}
fn measurement_vector(&self) -> Array1<f64> {
let ($($name,)+) = &self;
Array1::from_iter([$($name.measurement_vector().into_iter(),)+].into_iter().flatten().cloned())
}
fn feedback(&self) -> Array2<f64> {
let ($($name,)+) = &self;
let data = [$($name.feedback(),)+];
let dim = data
.iter()
.fold((0, 0), |(h, w), m| (h + m.nrows(), w + m.ncols()));
let mut block = Array2::zeros(dim);
let mut r_d = 0;
let mut c_d = 0;
for m in data {
for ((r, c), v) in m.indexed_iter() {
block[(r + r_d, c + c_d)] = *v;
}
r_d += m.nrows();
c_d += m.ncols();
}
block
}
fn transition(&self, t0: f64, t1: f64) -> Array2<f64> {
let ($($name,)+) = &self;
let data = [$($name.transition(t0, t1),)+];
let dim = data
.iter()
.fold((0, 0), |(h, w), m| (h + m.nrows(), w + m.ncols()));
let mut block = Array2::zeros(dim);
let mut r_d = 0;
let mut c_d = 0;
for m in data {
for ((r, c), v) in m.indexed_iter() {
block[(r + r_d, c + c_d)] = *v;
}
r_d += m.nrows();
c_d += m.ncols();
}
block
}
fn noise_effect(&self) -> Array2<f64> {
let ($($name,)+) = &self;
let data = [$($name.noise_effect(),)+];
let dim = data
.iter()
.fold((0, 0), |(h, w), m| (h + m.nrows(), w + m.ncols()));
let mut block = Array2::zeros(dim);
let mut r_d = 0;
let mut c_d = 0;
for m in data {
for ((r, c), v) in m.indexed_iter() {
block[(r + r_d, c + c_d)] = *v;
}
r_d += m.nrows();
c_d += m.ncols();
}
block
}
fn noise_cov(&self, t0: f64, t1: f64) -> Array2<f64> {
let ($($name,)+) = &self;
let data = [$($name.noise_cov(t0, t1),)+];
let dim = data
.iter()
.fold((0, 0), |(h, w), m| (h + m.nrows(), w + m.ncols()));
let mut block = Array2::zeros(dim);
let mut r_d = 0;
let mut c_d = 0;
for m in data {
for ((r, c), v) in m.indexed_iter() {
block[(r + r_d, c + c_d)] = *v;
}
r_d += m.nrows();
c_d += m.ncols();
}
block
}
}
};
}
tuple_impls! { A }
tuple_impls! { A B }
tuple_impls! { A B C }
tuple_impls! { A B C D }
tuple_impls! { A B C D E }
tuple_impls! { A B C D E F }
tuple_impls! { A B C D E F G }
tuple_impls! { A B C D E F G H }
tuple_impls! { A B C D E F G H I }
tuple_impls! { A B C D E F G H I J }
tuple_impls! { A B C D E F G H I J K }
tuple_impls! { A B C D E F G H I J K L }