208 lines
4.2 KiB
Rust
208 lines
4.2 KiB
Rust
use std::fmt;
|
|
use std::ops;
|
|
|
|
use crate::{utils, MU, SIGMA};
|
|
|
|
#[derive(Clone, Copy, PartialEq, Debug)]
|
|
pub struct Gaussian {
|
|
mu: f64,
|
|
sigma: f64,
|
|
}
|
|
|
|
impl Gaussian {
|
|
pub const fn new(mu: f64, sigma: f64) -> Self {
|
|
Gaussian { mu, sigma }
|
|
}
|
|
|
|
pub fn mu(&self) -> f64 {
|
|
self.mu
|
|
}
|
|
|
|
pub fn sigma(&self) -> f64 {
|
|
self.sigma
|
|
}
|
|
|
|
pub fn tau(&self) -> f64 {
|
|
self.mu * self.pi()
|
|
}
|
|
|
|
pub fn pi(&self) -> f64 {
|
|
self.sigma.powi(-2)
|
|
}
|
|
|
|
pub fn forget(&self, gamma: f64, t: f64) -> Self {
|
|
Self::new(self.mu, (self.sigma().powi(2) + t * gamma.powi(2)).sqrt())
|
|
}
|
|
|
|
pub fn delta(&self, m: Gaussian) -> (f64, f64) {
|
|
((self.mu() - m.mu()).abs(), (self.sigma() - m.sigma()).abs())
|
|
}
|
|
|
|
pub fn exclude(&self, m: Gaussian) -> Gaussian {
|
|
Gaussian::new(
|
|
self.mu() - m.mu(),
|
|
(self.sigma().powi(2) - m.sigma().powi(2)).sqrt(),
|
|
)
|
|
}
|
|
|
|
/*
|
|
def forget(self,gamma,t):
|
|
return Gaussian(self.mu, math.sqrt(self.sigma**2 + t*gamma**2))
|
|
|
|
def delta(self, M):
|
|
return abs(self.mu - M.mu) , abs(self.sigma - M.sigma)
|
|
|
|
def exclude(self, M):
|
|
return Gaussian(self.mu - M.mu, math.sqrt(self.sigma**2 - M.sigma**2) )
|
|
|
|
def isapprox(self, M, tol=1e-4):
|
|
return (abs(self.mu - M.mu) < tol) and (abs(self.sigma - M.sigma) < tol)
|
|
*/
|
|
}
|
|
|
|
impl Default for Gaussian {
|
|
fn default() -> Self {
|
|
Gaussian {
|
|
mu: MU,
|
|
sigma: SIGMA,
|
|
}
|
|
}
|
|
}
|
|
|
|
impl fmt::Display for Gaussian {
|
|
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
|
|
write!(f, "N(mu={:.3}, sigma={:.3})", self.mu, self.sigma)
|
|
}
|
|
}
|
|
|
|
impl ops::Add<Gaussian> for Gaussian {
|
|
type Output = Gaussian;
|
|
|
|
fn add(self, rhs: Gaussian) -> Self::Output {
|
|
Gaussian {
|
|
mu: self.mu + rhs.mu,
|
|
sigma: (self.sigma.powi(2) + rhs.sigma.powi(2)).sqrt(),
|
|
}
|
|
}
|
|
}
|
|
|
|
impl ops::Sub<Gaussian> for Gaussian {
|
|
type Output = Gaussian;
|
|
|
|
fn sub(self, rhs: Gaussian) -> Self::Output {
|
|
Gaussian {
|
|
mu: self.mu - rhs.mu,
|
|
sigma: (self.sigma.powi(2) + rhs.sigma.powi(2)).sqrt(),
|
|
}
|
|
}
|
|
}
|
|
|
|
impl ops::Mul<Gaussian> for Gaussian {
|
|
type Output = Gaussian;
|
|
|
|
fn mul(self, rhs: Gaussian) -> Self::Output {
|
|
let (mu, sigma) = utils::mu_sigma(self.tau() + rhs.tau(), self.pi() + rhs.pi());
|
|
|
|
Gaussian { mu, sigma }
|
|
}
|
|
}
|
|
|
|
impl ops::Div<Gaussian> for Gaussian {
|
|
type Output = Gaussian;
|
|
|
|
fn div(self, rhs: Gaussian) -> Self::Output {
|
|
let (mu, sigma) = utils::mu_sigma(self.tau() - rhs.tau(), self.pi() - rhs.pi());
|
|
|
|
Gaussian { mu, sigma }
|
|
}
|
|
}
|
|
|
|
#[cfg(test)]
|
|
mod tests {
|
|
use super::*;
|
|
|
|
#[test]
|
|
fn test_add() {
|
|
let n = Gaussian {
|
|
mu: 25.0,
|
|
sigma: 25.0 / 3.0,
|
|
};
|
|
|
|
let m = Gaussian {
|
|
mu: 0.0,
|
|
sigma: 1.0,
|
|
};
|
|
|
|
assert_eq!(
|
|
n + m,
|
|
Gaussian {
|
|
mu: 25.0,
|
|
sigma: 8.393118874676116
|
|
}
|
|
);
|
|
}
|
|
|
|
#[test]
|
|
fn test_sub() {
|
|
let n = Gaussian {
|
|
mu: 25.0,
|
|
sigma: 25.0 / 3.0,
|
|
};
|
|
|
|
let m = Gaussian {
|
|
mu: 1.0,
|
|
sigma: 1.0,
|
|
};
|
|
|
|
assert_eq!(
|
|
n - m,
|
|
Gaussian {
|
|
mu: 24.0,
|
|
sigma: 8.393118874676116
|
|
}
|
|
);
|
|
}
|
|
|
|
#[test]
|
|
fn test_mul() {
|
|
let n = Gaussian {
|
|
mu: 25.0,
|
|
sigma: 25.0 / 3.0,
|
|
};
|
|
|
|
let m = Gaussian {
|
|
mu: 0.0,
|
|
sigma: 1.0,
|
|
};
|
|
|
|
assert_eq!(
|
|
n * m,
|
|
Gaussian {
|
|
mu: 0.35488958990536273,
|
|
sigma: 0.992876838486922
|
|
}
|
|
);
|
|
}
|
|
|
|
#[test]
|
|
fn test_div() {
|
|
let n = Gaussian {
|
|
mu: 25.0,
|
|
sigma: 25.0 / 3.0,
|
|
};
|
|
|
|
let m = Gaussian {
|
|
mu: 0.0,
|
|
sigma: 1.0,
|
|
};
|
|
|
|
assert_eq!(
|
|
m / n,
|
|
Gaussian {
|
|
mu: -0.3652597402597402,
|
|
sigma: 1.0072787050317253
|
|
}
|
|
);
|
|
}
|
|
}
|