Compare commits

...

16 Commits

Author SHA1 Message Date
853f177fa8 Small changes for new 2024 edition 2025-02-21 14:09:58 +01:00
fc0efcdc52 Update edition 2025-02-21 14:06:28 +01:00
3bbddb168f Ignore temp folder 2024-04-03 14:43:54 +02:00
2366c45f6a Basic test for quality 2024-04-03 10:25:10 +02:00
3a22b20a17 Added todo to readme, and documentation for quality function 2024-04-03 09:53:07 +02:00
02ae2f0977 Change assert to debug_assert 2024-04-03 09:44:41 +02:00
Anders Olsson
db743bc417 Improve performance 2023-10-31 10:02:07 +01:00
Anders Olsson
7e2576085f Make quality a free standing function instead 2023-10-26 11:11:54 +02:00
Anders Olsson
062c9d3765 Added quality function 2023-10-26 11:09:30 +02:00
Anders Olsson
755a5ea668 Move stuff around 2023-10-26 11:01:14 +02:00
Anders Olsson
72e06eb536 Rename variables 2023-10-26 08:26:28 +02:00
Anders Olsson
e3eebb507c Refactor history 2023-10-26 08:18:15 +02:00
Anders Olsson
d8dfbba251 Fix clippy warning 2023-10-25 08:16:45 +02:00
Anders Olsson
d152e356f1 Remove unnecessary allocations 2023-10-24 16:10:40 +02:00
Anders Olsson
59c256edad Dry my eyes 2023-10-24 09:50:16 +02:00
Anders Olsson
efa235be59 Clean up 2023-10-24 09:44:42 +02:00
12 changed files with 489 additions and 447 deletions

1
.gitignore vendored
View File

@@ -1,5 +1,6 @@
/target /target
/Cargo.lock /Cargo.lock
/temp
.justfile .justfile
*.svg *.svg

View File

@@ -1,7 +1,7 @@
[package] [package]
name = "trueskill-tt" name = "trueskill-tt"
version = "0.1.0" version = "0.1.0"
edition = "2021" edition = "2024"
[lib] [lib]
bench = false bench = false

View File

@@ -1,15 +1,8 @@
# History # History
```shell ```rust
teams: [[player]] let mut history = History::new();
weights: [[f64]]
results: [f64]
player: (gaussian, f64, f64) let agent_a = history.new_agent();
let agent_b = history.new_agent_with_prior(Prior::new(Gaussian::default(), BETA, GAMMA));
players: [player]
weights: [f64]
teams: [([(player, weight)], result)]
``` ```

View File

@@ -15,6 +15,7 @@ Rust port of [TrueSkillThroughTime.py](https://github.com/glandfried/TrueSkillTh
- [x] Implement approx for Gaussian - [x] Implement approx for Gaussian
- [x] Add more tests from `TrueSkillThroughTime.jl` - [x] Add more tests from `TrueSkillThroughTime.jl`
- [ ] Add tests for `quality()` (Use [sublee/trueskill](https://github.com/sublee/trueskill/tree/master) as reference)
- [ ] Benchmark Batch::iteration() - [ ] Benchmark Batch::iteration()
- [ ] Time needs to be an enum so we can have multiple states (see `batch::compute_elapsed()`) - [ ] Time needs to be an enum so we can have multiple states (see `batch::compute_elapsed()`)
- [ ] Add examples (use same TrueSkillThroughTime.(py|jl)) - [ ] Add examples (use same TrueSkillThroughTime.(py|jl))

View File

@@ -51,7 +51,8 @@ fn criterion_benchmark(criterion: &mut Criterion) {
weights.push(vec![vec![1.0], vec![1.0]]); weights.push(vec![vec![1.0], vec![1.0]]);
} }
let mut batch = Batch::new(composition, results, weights, 1, P_DRAW, &agents); let mut batch = Batch::new(1, P_DRAW);
batch.add_events(composition, results, weights, &agents);
criterion.bench_function("Batch::iteration", |b| { criterion.bench_function("Batch::iteration", |b| {
b.iter(|| batch.iteration(0, &agents)) b.iter(|| batch.iteration(0, &agents))

View File

@@ -1,4 +1,4 @@
use std::collections::{HashMap, HashSet}; use std::collections::HashMap;
use crate::{ use crate::{
agent::Agent, game::Game, gaussian::Gaussian, player::Player, tuple_gt, tuple_max, Index, N_INF, agent::Agent, game::Game, gaussian::Gaussian, player::Player, tuple_gt, tuple_max, Index, N_INF,
@@ -107,119 +107,43 @@ pub struct Batch {
} }
impl Batch { impl Batch {
pub fn new( pub fn new(time: i64, p_draw: f64) -> Self {
composition: Vec<Vec<Vec<Index>>>, Self {
results: Vec<Vec<f64>>, events: Vec::new(),
weights: Vec<Vec<Vec<f64>>>, skills: HashMap::new(),
time: i64,
p_draw: f64,
agents: &HashMap<Index, Agent>,
) -> Self {
assert!(
results.is_empty() || results.len() == composition.len(),
"TODO: Add a comment here"
);
assert!(
weights.is_empty() || weights.len() == composition.len(),
"TODO: Add a comment here"
);
let this_agent = composition
.iter()
.flatten()
.flatten()
.collect::<HashSet<_>>();
let skills = this_agent
.iter()
.map(|&idx| {
let elapsed = compute_elapsed(agents[idx].last_time, time);
(
*idx,
Skill {
forward: agents[idx].receive(elapsed),
elapsed,
..Default::default()
},
)
})
.collect::<HashMap<_, _>>();
let events = composition
.iter()
.enumerate()
.map(|(e, event)| {
let teams = event
.iter()
.enumerate()
.map(|(t, team)| {
let items = team
.iter()
.map(|&agent| Item {
agent,
likelihood: N_INF,
})
.collect::<Vec<_>>();
Team {
items,
output: if results.is_empty() {
(event.len() - (t + 1)) as f64
} else {
results[e][t]
},
}
})
.collect::<Vec<_>>();
Event {
teams,
evidence: 0.0,
weights: if weights.is_empty() {
Vec::new()
} else {
weights[e].clone()
},
}
})
.collect::<Vec<_>>();
let mut this = Self {
time, time,
events,
skills,
p_draw, p_draw,
}; }
this.iteration(0, agents);
this
} }
pub(crate) fn add_events( pub fn add_events(
&mut self, &mut self,
composition: Vec<Vec<Vec<Index>>>, composition: Vec<Vec<Vec<Index>>>,
results: Vec<Vec<f64>>, results: Vec<Vec<f64>>,
weights: Vec<Vec<Vec<f64>>>, weights: Vec<Vec<Vec<f64>>>,
agents: &HashMap<Index, Agent>, agents: &HashMap<Index, Agent>,
) { ) {
let this_agent = composition let mut unique = Vec::with_capacity(10);
.iter()
.flatten() let this_agent = composition.iter().flatten().flatten().filter(|idx| {
.flatten() if !unique.contains(idx) {
.cloned() unique.push(*idx);
.collect::<HashSet<_>>();
return true;
}
false
});
for idx in this_agent { for idx in this_agent {
let elapsed = compute_elapsed(agents[&idx].last_time, self.time); let elapsed = compute_elapsed(agents[&idx].last_time, self.time);
if let Some(skill) = self.skills.get_mut(&idx) { if let Some(skill) = self.skills.get_mut(idx) {
skill.elapsed = elapsed; skill.elapsed = elapsed;
skill.forward = agents[&idx].receive(elapsed); skill.forward = agents[&idx].receive(elapsed);
} else { } else {
self.skills.insert( self.skills.insert(
idx, *idx,
Skill { Skill {
forward: agents[&idx].receive(elapsed), forward: agents[&idx].receive(elapsed),
elapsed, elapsed,
@@ -253,14 +177,19 @@ impl Batch {
}) })
.collect::<Vec<_>>(); .collect::<Vec<_>>();
let weights = if weights.is_empty() {
teams
.iter()
.map(|team| vec![1.0; team.items.len()])
.collect::<Vec<_>>()
} else {
weights[e].clone()
};
Event { Event {
teams, teams,
evidence: 0.0, evidence: 0.0,
weights: if weights.is_empty() { weights,
Vec::new()
} else {
weights[e].clone()
},
} }
}); });
@@ -283,7 +212,7 @@ impl Batch {
let teams = event.within_priors(false, false, &self.skills, agents); let teams = event.within_priors(false, false, &self.skills, agents);
let result = event.outputs(); let result = event.outputs();
let g = Game::new(teams, result, event.weights.clone(), self.p_draw); let g = Game::new(teams, &result, &event.weights, self.p_draw);
for (t, team) in event.teams.iter_mut().enumerate() { for (t, team) in event.teams.iter_mut().enumerate() {
for (i, item) in team.items.iter_mut().enumerate() { for (i, item) in team.items.iter_mut().enumerate() {
@@ -372,8 +301,8 @@ impl Batch {
.map(|(_, event)| { .map(|(_, event)| {
Game::new( Game::new(
event.within_priors(online, forward, &self.skills, agents), event.within_priors(online, forward, &self.skills, agents),
event.outputs(), &event.outputs(),
event.weights.clone(), &event.weights,
self.p_draw, self.p_draw,
) )
.evidence .evidence
@@ -397,8 +326,8 @@ impl Batch {
.map(|(_, event)| { .map(|(_, event)| {
Game::new( Game::new(
event.within_priors(online, forward, &self.skills, agents), event.within_priors(online, forward, &self.skills, agents),
event.outputs(), &event.outputs(),
event.weights.clone(), &event.weights,
self.p_draw, self.p_draw,
) )
.evidence .evidence
@@ -492,7 +421,9 @@ mod tests {
); );
} }
let mut batch = Batch::new( let mut batch = Batch::new(0, 0.0);
batch.add_events(
vec![ vec![
vec![vec![a], vec![b]], vec![vec![a], vec![b]],
vec![vec![c], vec![d]], vec![vec![c], vec![d]],
@@ -500,8 +431,6 @@ mod tests {
], ],
vec![vec![1.0, 0.0], vec![0.0, 1.0], vec![1.0, 0.0]], vec![vec![1.0, 0.0], vec![0.0, 1.0], vec![1.0, 0.0]],
vec![], vec![],
0,
0.0,
&agents, &agents,
); );
@@ -568,7 +497,9 @@ mod tests {
); );
} }
let mut batch = Batch::new( let mut batch = Batch::new(0, 0.0);
batch.add_events(
vec![ vec![
vec![vec![a], vec![b]], vec![vec![a], vec![b]],
vec![vec![a], vec![c]], vec![vec![a], vec![c]],
@@ -576,8 +507,6 @@ mod tests {
], ],
vec![vec![1.0, 0.0], vec![0.0, 1.0], vec![1.0, 0.0]], vec![vec![1.0, 0.0], vec![0.0, 1.0], vec![1.0, 0.0]],
vec![], vec![],
0,
0.0,
&agents, &agents,
); );
@@ -647,7 +576,9 @@ mod tests {
); );
} }
let mut batch = Batch::new( let mut batch = Batch::new(0, 0.0);
batch.add_events(
vec![ vec![
vec![vec![a], vec![b]], vec![vec![a], vec![b]],
vec![vec![a], vec![c]], vec![vec![a], vec![c]],
@@ -655,8 +586,6 @@ mod tests {
], ],
vec![vec![1.0, 0.0], vec![0.0, 1.0], vec![1.0, 0.0]], vec![vec![1.0, 0.0], vec![0.0, 1.0], vec![1.0, 0.0]],
vec![], vec![],
0,
0.0,
&agents, &agents,
); );

View File

@@ -7,66 +7,49 @@ use crate::{
}; };
#[derive(Debug)] #[derive(Debug)]
pub struct Game { pub struct Game<'a> {
teams: Vec<Vec<Player>>, teams: Vec<Vec<Player>>,
result: Vec<f64>, result: &'a [f64],
weights: Vec<Vec<f64>>, weights: &'a [Vec<f64>],
p_draw: f64, p_draw: f64,
pub(crate) likelihoods: Vec<Vec<Gaussian>>, pub(crate) likelihoods: Vec<Vec<Gaussian>>,
pub(crate) evidence: f64, pub(crate) evidence: f64,
} }
impl Game { impl<'a> Game<'a> {
pub fn new( pub fn new(
teams: Vec<Vec<Player>>, teams: Vec<Vec<Player>>,
mut result: Vec<f64>, result: &'a [f64],
mut weights: Vec<Vec<f64>>, weights: &'a [Vec<f64>],
p_draw: f64, p_draw: f64,
) -> Self { ) -> Self {
assert!( debug_assert!(
(result.is_empty() || result.len() == teams.len()), (result.len() == teams.len()),
"result must be empty or the same length as teams" "result must have the same length as teams"
); );
assert!( debug_assert!(
(weights.is_empty() || weights.len() == teams.len()), weights
"weights must be empty or the same length as teams"
);
assert!(
weights.is_empty()
|| weights
.iter() .iter()
.zip(teams.iter()) .zip(teams.iter())
.all(|(w, t)| w.len() == t.len()), .all(|(w, t)| w.len() == t.len()),
"weights must be empty or has the same dimensions as teams" "weights must have the same dimensions as teams"
); );
assert!( debug_assert!(
(0.0..1.0).contains(&p_draw), (0.0..1.0).contains(&p_draw),
"draw probability.must be >= 0.0 and < 1.0" "draw probability.must be >= 0.0 and < 1.0"
); );
assert!( debug_assert!(
p_draw > 0.0 || { p_draw > 0.0 || {
let mut r = result.clone(); let mut r = result.to_vec();
r.sort_unstable_by(|a, b| a.partial_cmp(b).unwrap()); r.sort_unstable_by(|a, b| a.partial_cmp(b).unwrap());
r.windows(2).all(|w| w[0] != w[1]) r.windows(2).all(|w| w[0] != w[1])
}, },
"draw must be > 0.0 if there is teams with draw" "draw must be > 0.0 if there is teams with draw"
); );
if result.is_empty() {
result = (0..teams.len()).rev().map(|i| i as f64).collect::<Vec<_>>();
}
if weights.is_empty() {
weights = teams
.iter()
.map(|team| vec![1.0; team.len()])
.collect::<Vec<_>>();
}
let mut this = Self { let mut this = Self {
teams, teams,
result, result,
@@ -82,31 +65,7 @@ impl Game {
} }
fn likelihoods(&mut self) { fn likelihoods(&mut self) {
let m_t_ft = self.likelihood_teams(); let o = sort_perm(self.result, true);
self.likelihoods = self
.teams
.iter()
.zip(self.weights.iter())
.zip(m_t_ft)
.map(|((p, w), m)| {
let performance = p.iter().zip(w.iter()).fold(N00, |p, (player, &weight)| {
p + (player.performance() * weight)
});
p.iter()
.zip(w.iter())
.map(|(p, &w)| {
((m - performance.exclude(p.performance() * w)) * (1.0 / w))
.forget(p.beta, 1)
})
.collect::<Vec<_>>()
})
.collect::<Vec<_>>();
}
fn likelihood_teams(&mut self) -> Vec<Gaussian> {
let o = sort_perm(&self.result, true);
let mut team = o let mut team = o
.iter() .iter()
@@ -143,14 +102,10 @@ impl Game {
} else { } else {
o.windows(2) o.windows(2)
.map(|w| { .map(|w| {
if self.p_draw == 0.0 {
0.0
} else {
let a: f64 = self.teams[w[0]].iter().map(|a| a.beta.powi(2)).sum(); let a: f64 = self.teams[w[0]].iter().map(|a| a.beta.powi(2)).sum();
let b: f64 = self.teams[w[1]].iter().map(|a| a.beta.powi(2)).sum(); let b: f64 = self.teams[w[1]].iter().map(|a| a.beta.powi(2)).sum();
compute_margin(self.p_draw, (a + b).sqrt()) compute_margin(self.p_draw, (a + b).sqrt())
}
}) })
.collect::<Vec<_>>() .collect::<Vec<_>>()
}; };
@@ -205,7 +160,27 @@ impl Game {
team[0].likelihood_win = team[1].posterior_lose() + diff[0].likelihood; team[0].likelihood_win = team[1].posterior_lose() + diff[0].likelihood;
team[t_end].likelihood_lose = team[t_end - 1].posterior_win() - diff[d_end].likelihood; team[t_end].likelihood_lose = team[t_end - 1].posterior_win() - diff[d_end].likelihood;
o.iter().map(|&e| team[e].likelihood()).collect::<Vec<_>>() let m_t_ft = o.into_iter().map(|e| team[e].likelihood());
self.likelihoods = self
.teams
.iter()
.zip(self.weights.iter())
.zip(m_t_ft)
.map(|((p, w), m)| {
let performance = p.iter().zip(w.iter()).fold(N00, |p, (player, &weight)| {
p + (player.performance() * weight)
});
p.iter()
.zip(w.iter())
.map(|(p, &w)| {
((m - performance.exclude(p.performance() * w)) * (1.0 / w))
.forget(p.beta, 1)
})
.collect::<Vec<_>>()
})
.collect::<Vec<_>>();
} }
pub fn posteriors(&self) -> Vec<Vec<Gaussian>> { pub fn posteriors(&self) -> Vec<Vec<Gaussian>> {
@@ -243,7 +218,8 @@ mod tests {
25.0 / 300.0, 25.0 / 300.0,
); );
let g = Game::new(vec![vec![t_a], vec![t_b]], vec![0.0, 1.0], vec![], 0.0); let w = [vec![1.0], vec![1.0]];
let g = Game::new(vec![vec![t_a], vec![t_b]], &[0.0, 1.0], &w, 0.0);
let p = g.posteriors(); let p = g.posteriors();
let a = p[0][0]; let a = p[0][0];
@@ -255,7 +231,8 @@ mod tests {
let t_a = Player::new(Gaussian::from_ms(29.0, 1.0), 25.0 / 6.0, GAMMA); let t_a = Player::new(Gaussian::from_ms(29.0, 1.0), 25.0 / 6.0, GAMMA);
let t_b = Player::new(Gaussian::from_ms(25.0, 25.0 / 3.0), 25.0 / 6.0, GAMMA); let t_b = Player::new(Gaussian::from_ms(25.0, 25.0 / 3.0), 25.0 / 6.0, GAMMA);
let g = Game::new(vec![vec![t_a], vec![t_b]], vec![0.0, 1.0], vec![], 0.0); let w = [vec![1.0], vec![1.0]];
let g = Game::new(vec![vec![t_a], vec![t_b]], &[0.0, 1.0], &w, 0.0);
let p = g.posteriors(); let p = g.posteriors();
let a = p[0][0]; let a = p[0][0];
@@ -267,7 +244,8 @@ mod tests {
let t_a = Player::new(Gaussian::from_ms(1.139, 0.531), 1.0, 0.2125); let t_a = Player::new(Gaussian::from_ms(1.139, 0.531), 1.0, 0.2125);
let t_b = Player::new(Gaussian::from_ms(15.568, 0.51), 1.0, 0.2125); let t_b = Player::new(Gaussian::from_ms(15.568, 0.51), 1.0, 0.2125);
let g = Game::new(vec![vec![t_a], vec![t_b]], vec![0.0, 1.0], vec![], 0.0); let w = [vec![1.0], vec![1.0]];
let g = Game::new(vec![vec![t_a], vec![t_b]], &[0.0, 1.0], &w, 0.0);
assert_eq!(g.likelihoods[0][0], N_INF); assert_eq!(g.likelihoods[0][0], N_INF);
assert_eq!(g.likelihoods[1][0], N_INF); assert_eq!(g.likelihoods[1][0], N_INF);
@@ -293,7 +271,8 @@ mod tests {
)], )],
]; ];
let g = Game::new(teams.clone(), vec![1.0, 2.0, 0.0], vec![], 0.0); let w = [vec![1.0], vec![1.0], vec![1.0]];
let g = Game::new(teams.clone(), &[1.0, 2.0, 0.0], &w, 0.0);
let p = g.posteriors(); let p = g.posteriors();
let a = p[0][0]; let a = p[0][0];
@@ -302,7 +281,8 @@ mod tests {
assert_ulps_eq!(a, Gaussian::from_ms(25.000000, 6.238469), epsilon = 1e-6); assert_ulps_eq!(a, Gaussian::from_ms(25.000000, 6.238469), epsilon = 1e-6);
assert_ulps_eq!(b, Gaussian::from_ms(31.311358, 6.698818), epsilon = 1e-6); assert_ulps_eq!(b, Gaussian::from_ms(31.311358, 6.698818), epsilon = 1e-6);
let g = Game::new(teams.clone(), vec![], vec![], 0.0); let w = [vec![1.0], vec![1.0], vec![1.0]];
let g = Game::new(teams.clone(), &[2.0, 1.0, 0.0], &w, 0.0);
let p = g.posteriors(); let p = g.posteriors();
let a = p[0][0]; let a = p[0][0];
@@ -311,7 +291,8 @@ mod tests {
assert_ulps_eq!(a, Gaussian::from_ms(31.311358, 6.698818), epsilon = 1e-6); assert_ulps_eq!(a, Gaussian::from_ms(31.311358, 6.698818), epsilon = 1e-6);
assert_ulps_eq!(b, Gaussian::from_ms(25.000000, 6.238469), epsilon = 1e-6); assert_ulps_eq!(b, Gaussian::from_ms(25.000000, 6.238469), epsilon = 1e-6);
let g = Game::new(teams, vec![1.0, 2.0, 0.0], vec![], 0.5); let w = [vec![1.0], vec![1.0], vec![1.0]];
let g = Game::new(teams, &[1.0, 2.0, 0.0], &w, 0.5);
let p = g.posteriors(); let p = g.posteriors();
let a = p[0][0]; let a = p[0][0];
@@ -336,7 +317,8 @@ mod tests {
25.0 / 300.0, 25.0 / 300.0,
); );
let g = Game::new(vec![vec![t_a], vec![t_b]], vec![0.0, 0.0], vec![], 0.25); let w = [vec![1.0], vec![1.0]];
let g = Game::new(vec![vec![t_a], vec![t_b]], &[0.0, 0.0], &w, 0.25);
let p = g.posteriors(); let p = g.posteriors();
let a = p[0][0]; let a = p[0][0];
@@ -348,7 +330,8 @@ mod tests {
let t_a = Player::new(Gaussian::from_ms(25.0, 3.0), 25.0 / 6.0, 25.0 / 300.0); let t_a = Player::new(Gaussian::from_ms(25.0, 3.0), 25.0 / 6.0, 25.0 / 300.0);
let t_b = Player::new(Gaussian::from_ms(29.0, 2.0), 25.0 / 6.0, 25.0 / 300.0); let t_b = Player::new(Gaussian::from_ms(29.0, 2.0), 25.0 / 6.0, 25.0 / 300.0);
let g = Game::new(vec![vec![t_a], vec![t_b]], vec![0.0, 0.0], vec![], 0.25); let w = [vec![1.0], vec![1.0]];
let g = Game::new(vec![vec![t_a], vec![t_b]], &[0.0, 0.0], &w, 0.25);
let p = g.posteriors(); let p = g.posteriors();
let a = p[0][0]; let a = p[0][0];
@@ -376,10 +359,11 @@ mod tests {
25.0 / 300.0, 25.0 / 300.0,
); );
let w = [vec![1.0], vec![1.0], vec![1.0]];
let g = Game::new( let g = Game::new(
vec![vec![t_a], vec![t_b], vec![t_c]], vec![vec![t_a], vec![t_b], vec![t_c]],
vec![0.0, 0.0, 0.0], &[0.0, 0.0, 0.0],
vec![], &w,
0.25, 0.25,
); );
let p = g.posteriors(); let p = g.posteriors();
@@ -396,10 +380,11 @@ mod tests {
let t_b = Player::new(Gaussian::from_ms(25.0, 3.0), 25.0 / 6.0, 25.0 / 300.0); let t_b = Player::new(Gaussian::from_ms(25.0, 3.0), 25.0 / 6.0, 25.0 / 300.0);
let t_c = Player::new(Gaussian::from_ms(29.0, 2.0), 25.0 / 6.0, 25.0 / 300.0); let t_c = Player::new(Gaussian::from_ms(29.0, 2.0), 25.0 / 6.0, 25.0 / 300.0);
let w = [vec![1.0], vec![1.0], vec![1.0]];
let g = Game::new( let g = Game::new(
vec![vec![t_a], vec![t_b], vec![t_c]], vec![vec![t_a], vec![t_b], vec![t_c]],
vec![0.0, 0.0, 0.0], &[0.0, 0.0, 0.0],
vec![], &w,
0.25, 0.25,
); );
let p = g.posteriors(); let p = g.posteriors();
@@ -429,7 +414,8 @@ mod tests {
Player::new(Gaussian::from_ms(16., 3.0), 25.0 / 6.0, 25.0 / 300.0), Player::new(Gaussian::from_ms(16., 3.0), 25.0 / 6.0, 25.0 / 300.0),
]; ];
let g = Game::new(vec![t_a, t_b, t_c], vec![1.0, 0.0, 0.0], vec![], 0.25); let w = [vec![1.0, 1.0], vec![1.0], vec![1.0, 1.0]];
let g = Game::new(vec![t_a, t_b, t_c], &[1.0, 0.0, 0.0], &w, 0.25);
let p = g.posteriors(); let p = g.posteriors();
assert_ulps_eq!(p[0][0], Gaussian::from_ms(13.051, 2.864), epsilon = 1e-3); assert_ulps_eq!(p[0][0], Gaussian::from_ms(13.051, 2.864), epsilon = 1e-3);
@@ -455,7 +441,8 @@ mod tests {
0.0, 0.0,
)]; )];
let g = Game::new(vec![t_a.clone(), t_b.clone()], vec![], vec![w_a, w_b], 0.0); let w = [w_a, w_b];
let g = Game::new(vec![t_a.clone(), t_b.clone()], &[1.0, 0.0], &w, 0.0);
let p = g.posteriors(); let p = g.posteriors();
assert_ulps_eq!( assert_ulps_eq!(
@@ -472,7 +459,8 @@ mod tests {
let w_a = vec![1.0]; let w_a = vec![1.0];
let w_b = vec![0.7]; let w_b = vec![0.7];
let g = Game::new(vec![t_a.clone(), t_b.clone()], vec![], vec![w_a, w_b], 0.0); let w = [w_a, w_b];
let g = Game::new(vec![t_a.clone(), t_b.clone()], &[1.0, 0.0], &w, 0.0);
let p = g.posteriors(); let p = g.posteriors();
assert_ulps_eq!( assert_ulps_eq!(
@@ -489,7 +477,8 @@ mod tests {
let w_a = vec![1.6]; let w_a = vec![1.6];
let w_b = vec![0.7]; let w_b = vec![0.7];
let g = Game::new(vec![t_a, t_b], vec![], vec![w_a, w_b], 0.0); let w = [w_a, w_b];
let g = Game::new(vec![t_a, t_b], &[1.0, 0.0], &w, 0.0);
let p = g.posteriors(); let p = g.posteriors();
assert_ulps_eq!( assert_ulps_eq!(
@@ -509,7 +498,8 @@ mod tests {
let t_a = vec![Player::new(Gaussian::from_ms(2.0, 6.0), 1.0, 0.0)]; let t_a = vec![Player::new(Gaussian::from_ms(2.0, 6.0), 1.0, 0.0)];
let t_b = vec![Player::new(Gaussian::from_ms(2.0, 6.0), 1.0, 0.0)]; let t_b = vec![Player::new(Gaussian::from_ms(2.0, 6.0), 1.0, 0.0)];
let g = Game::new(vec![t_a, t_b], vec![], vec![w_a, w_b], 0.0); let w = [w_a, w_b];
let g = Game::new(vec![t_a, t_b], &[1.0, 0.0], &w, 0.0);
let p = g.posteriors(); let p = g.posteriors();
assert_ulps_eq!( assert_ulps_eq!(
@@ -529,7 +519,8 @@ mod tests {
let t_a = vec![Player::new(Gaussian::from_ms(2.0, 6.0), 1.0, 0.0)]; let t_a = vec![Player::new(Gaussian::from_ms(2.0, 6.0), 1.0, 0.0)];
let t_b = vec![Player::new(Gaussian::from_ms(2.0, 6.0), 1.0, 0.0)]; let t_b = vec![Player::new(Gaussian::from_ms(2.0, 6.0), 1.0, 0.0)];
let g = Game::new(vec![t_a, t_b], vec![], vec![w_a, w_b], 0.0); let w = [w_a, w_b];
let g = Game::new(vec![t_a, t_b], &[1.0, 0.0], &w, 0.0);
let p = g.posteriors(); let p = g.posteriors();
assert_ulps_eq!(p[0][0], p[1][0], epsilon = 1e-6); assert_ulps_eq!(p[0][0], p[1][0], epsilon = 1e-6);
@@ -549,7 +540,8 @@ mod tests {
]; ];
let w_b = vec![0.9, 0.6]; let w_b = vec![0.9, 0.6];
let g = Game::new(vec![t_a.clone(), t_b.clone()], vec![], vec![w_a, w_b], 0.0); let w = [w_a, w_b];
let g = Game::new(vec![t_a.clone(), t_b.clone()], &[1.0, 0.0], &w, 0.0);
let p = g.posteriors(); let p = g.posteriors();
assert_ulps_eq!( assert_ulps_eq!(
@@ -576,7 +568,8 @@ mod tests {
let w_a = vec![1.3, 1.5]; let w_a = vec![1.3, 1.5];
let w_b = vec![0.7, 0.4]; let w_b = vec![0.7, 0.4];
let g = Game::new(vec![t_a.clone(), t_b.clone()], vec![], vec![w_a, w_b], 0.0); let w = [w_a, w_b];
let g = Game::new(vec![t_a.clone(), t_b.clone()], &[1.0, 0.0], &w, 0.0);
let p = g.posteriors(); let p = g.posteriors();
assert_ulps_eq!( assert_ulps_eq!(
@@ -603,7 +596,8 @@ mod tests {
let w_a = vec![1.6, 0.2]; let w_a = vec![1.6, 0.2];
let w_b = vec![0.7, 2.4]; let w_b = vec![0.7, 2.4];
let g = Game::new(vec![t_a.clone(), t_b.clone()], vec![], vec![w_a, w_b], 0.0); let w = [w_a, w_b];
let g = Game::new(vec![t_a.clone(), t_b.clone()], &[1.0, 0.0], &w, 0.0);
let p = g.posteriors(); let p = g.posteriors();
assert_ulps_eq!( assert_ulps_eq!(
@@ -627,6 +621,7 @@ mod tests {
epsilon = 1e-6 epsilon = 1e-6
); );
let w = [vec![1.0, 1.0], vec![1.0]];
let g = Game::new( let g = Game::new(
vec![ vec![
t_a.clone(), t_a.clone(),
@@ -636,8 +631,8 @@ mod tests {
0.0, 0.0,
)], )],
], ],
vec![], &[1.0, 0.0],
vec![], &w,
0.0, 0.0,
); );
let post_2vs1 = g.posteriors(); let post_2vs1 = g.posteriors();
@@ -645,7 +640,8 @@ mod tests {
let w_a = vec![1.0, 1.0]; let w_a = vec![1.0, 1.0];
let w_b = vec![1.0, 0.0]; let w_b = vec![1.0, 0.0];
let g = Game::new(vec![t_a, t_b.clone()], vec![], vec![w_a, w_b], 0.0); let w = [w_a, w_b];
let g = Game::new(vec![t_a, t_b.clone()], &[1.0, 0.0], &w, 0.0);
let p = g.posteriors(); let p = g.posteriors();
assert_ulps_eq!(p[0][0], post_2vs1[0][0], epsilon = 1e-6); assert_ulps_eq!(p[0][0], post_2vs1[0][0], epsilon = 1e-6);

View File

@@ -1,159 +0,0 @@
use std::ops;
#[derive(Clone, Copy, PartialEq, Debug)]
pub struct Gaussian {
mu: f64,
sigma: f64,
}
impl Gaussian {
#[inline(always)]
pub const fn from_ms(mu: f64, sigma: f64) -> Self {
Self { mu, sigma }
}
#[inline(always)]
pub fn from_pt(pi: f64, tau: f64) -> Self {
Self::from_ms(tau / pi, (1.0 / pi).sqrt())
}
#[inline(always)]
pub fn mu(&self) -> f64 {
self.mu
}
#[inline(always)]
pub fn sigma(&self) -> f64 {
self.sigma
}
#[inline(always)]
pub fn pi(&self) -> f64 {
if self.sigma > 0.0 {
self.sigma.powi(-2)
} else {
f64::INFINITY
}
}
#[inline(always)]
pub fn tau(&self) -> f64 {
if self.sigma > 0.0 {
self.mu * self.pi()
} else {
f64::INFINITY
}
}
}
impl ops::Add<Gaussian> for Gaussian {
type Output = Gaussian;
fn add(self, rhs: Gaussian) -> Self::Output {
Self {
mu: self.mu + rhs.mu,
sigma: (self.sigma.powi(2) + rhs.sigma.powi(2)).sqrt(),
}
}
}
impl ops::Sub<Gaussian> for Gaussian {
type Output = Gaussian;
fn sub(self, rhs: Gaussian) -> Self::Output {
Self {
mu: self.mu - rhs.mu,
sigma: (self.sigma.powi(2) + rhs.sigma.powi(2)).sqrt(),
}
}
}
impl ops::Mul<Gaussian> for Gaussian {
type Output = Gaussian;
fn mul(self, rhs: Gaussian) -> Self::Output {
/*
if self.sigma == 0.0 || rhs.sigma == 0.0 {
let mu = self.mu / (self.sigma.powi(2) / rhs.sigma.powi(2) + 1.0)
+ rhs.mu / (rhs.sigma.powi(2) / self.sigma.powi(2) + 1.0);
let sigma = (1.0 / ((1.0 / self.sigma.powi(2)) + (1.0 / rhs.sigma.powi(2)))).sqrt();
Self::from_ms(mu, sigma)
} else {
Self::from_pt(self.pi() + rhs.pi(), self.tau() + rhs.tau())
}
*/
Self::from_pt(self.pi() + rhs.pi(), self.tau() + rhs.tau())
}
}
impl ops::Div<Gaussian> for Gaussian {
type Output = Gaussian;
fn div(self, rhs: Gaussian) -> Self::Output {
/*
let (mu, sigma) = if self.sigma == 0.0 || rhs.sigma == 0.0 {
let mu = self.mu / (1.0 - self.sigma.powi(2) / rhs.sigma.powi(2))
+ rhs.mu / (rhs.sigma.powi(2) / self.sigma.powi(2) - 1.0);
let sigma = (1.0 / ((1.0 / self.sigma.powi(2)) - (1.0 / rhs.sigma.powi(2)))).sqrt();
Self::from_ms(mu, sigma)
} else {
Self::from_pt(self.pi() - rhs.pi(), self.tau() - rhs.tau())
}
*/
Self::from_pt(self.pi() - rhs.pi(), self.tau() - rhs.tau())
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_add() {
let n = Gaussian::from_ms(25.0, 25.0 / 3.0);
let m = Gaussian::from_ms(0.0, 1.0);
assert_eq!(n + m, Gaussian::from_ms(25.0, 8.393118874676116));
}
#[test]
fn test_sub() {
let n = Gaussian::from_ms(25.0, 25.0 / 3.0);
let m = Gaussian::from_ms(1.0, 1.0);
assert_eq!(n - m, Gaussian::from_ms(24.0, 8.393118874676116));
}
#[test]
fn test_mul() {
let n = Gaussian::from_ms(25.0, 25.0 / 3.0);
let m = Gaussian::from_ms(0.0, 1.0);
assert_eq!(
n * m,
Gaussian::from_ms(0.35488958990536273, 0.992876838486922)
);
}
#[test]
fn test_div() {
let n = Gaussian::from_ms(25.0, 25.0 / 3.0);
let m = Gaussian::from_ms(0.0, 1.0);
assert_eq!(
m / n,
Gaussian::from_ms(-0.3652597402597402, 1.0072787050317253)
);
assert_eq!(
n / m,
Gaussian::from_ms(-0.3652597402597402, 1.0072787050317253)
);
}
}

View File

@@ -1,4 +1,4 @@
use std::collections::{HashMap, HashSet}; use std::collections::HashMap;
use crate::{ use crate::{
agent::{self, Agent}, agent::{self, Agent},
@@ -247,7 +247,7 @@ impl History {
results: Vec<Vec<f64>>, results: Vec<Vec<f64>>,
times: Vec<i64>, times: Vec<i64>,
weights: Vec<Vec<Vec<f64>>>, weights: Vec<Vec<Vec<f64>>>,
priors: HashMap<Index, Player>, mut priors: HashMap<Index, Player>,
) { ) {
assert!(times.is_empty() || self.time, "length(times)>0 but !h.time"); assert!(times.is_empty() || self.time, "length(times)>0 but !h.time");
assert!( assert!(
@@ -267,19 +267,22 @@ impl History {
"(length(weights) > 0) & (length(composition) != length(weights))" "(length(weights) > 0) & (length(composition) != length(weights))"
); );
let this_agent = composition agent::clean(self.agents.values_mut(), true);
.iter()
.flatten() let mut this_agent = Vec::with_capacity(1024);
.flatten()
.cloned() for agent in composition.iter().flatten().flatten() {
.collect::<HashSet<_>>(); if this_agent.contains(agent) {
continue;
}
this_agent.push(*agent);
for agent in &this_agent {
if !self.agents.contains_key(agent) { if !self.agents.contains_key(agent) {
self.agents.insert( self.agents.insert(
*agent, *agent,
Agent { Agent {
player: priors.get(agent).cloned().unwrap_or_else(|| { player: priors.remove(agent).unwrap_or_else(|| {
Player::new( Player::new(
Gaussian::from_ms(self.mu, self.sigma), Gaussian::from_ms(self.mu, self.sigma),
self.beta, self.beta,
@@ -292,8 +295,6 @@ impl History {
} }
} }
agent::clean(self.agents.values_mut(), true);
let n = composition.len(); let n = composition.len();
let o = if self.time { let o = if self.time {
sort_time(&times, false) sort_time(&times, false)
@@ -315,26 +316,23 @@ impl History {
while (!self.time && (self.size > k)) while (!self.time && (self.size > k))
|| (self.time && self.batches.len() > k && self.batches[k].time < t) || (self.time && self.batches.len() > k && self.batches[k].time < t)
{ {
let b = &mut self.batches[k]; let batch = &mut self.batches[k];
if k > 0 { if k > 0 {
b.new_forward_info(&self.agents); batch.new_forward_info(&self.agents);
} }
let intersect = this_agent // TODO: Is it faster to iterate over agents in batch instead?
.iter() for agent_idx in &this_agent {
.filter(|&agent| b.skills.contains_key(agent)) if let Some(skill) = batch.skills.get_mut(agent_idx) {
.cloned() skill.elapsed =
.collect::<Vec<_>>(); batch::compute_elapsed(self.agents[agent_idx].last_time, batch.time);
for agent in &intersect { let agent = self.agents.get_mut(agent_idx).unwrap();
b.skills.get_mut(agent).unwrap().elapsed =
batch::compute_elapsed(self.agents[agent].last_time, b.time);
let a = self.agents.get_mut(agent).unwrap(); agent.last_time = if self.time { batch.time } else { i64::MAX };
agent.message = batch.forward_prior_out(agent_idx);
a.last_time = if self.time { b.time } else { i64::MAX }; }
a.message = b.forward_prior_out(agent);
} }
k += 1; k += 1;
@@ -343,6 +341,7 @@ impl History {
let composition = (i..j) let composition = (i..j)
.map(|e| composition[o[e]].clone()) .map(|e| composition[o[e]].clone())
.collect::<Vec<_>>(); .collect::<Vec<_>>();
let results = if results.is_empty() { let results = if results.is_empty() {
Vec::new() Vec::new()
} else { } else {
@@ -356,28 +355,28 @@ impl History {
}; };
if self.time && self.batches.len() > k && self.batches[k].time == t { if self.time && self.batches.len() > k && self.batches[k].time == t {
let b = &mut self.batches[k]; let batch = &mut self.batches[k];
batch.add_events(composition, results, weights, &self.agents);
b.add_events(composition, results, weights, &self.agents); for agent_idx in batch.skills.keys() {
let agent = self.agents.get_mut(agent_idx).unwrap();
for a in b.skills.keys() {
let agent = self.agents.get_mut(a).unwrap();
agent.last_time = if self.time { t } else { i64::MAX }; agent.last_time = if self.time { t } else { i64::MAX };
agent.message = b.forward_prior_out(a); agent.message = batch.forward_prior_out(agent_idx);
} }
} else { } else {
let b = Batch::new(composition, results, weights, t, self.p_draw, &self.agents); let mut batch: Batch = Batch::new(t, self.p_draw);
batch.add_events(composition, results, weights, &self.agents);
self.batches.insert(k, b); self.batches.insert(k, batch);
let b = &self.batches[k]; let batch = &self.batches[k];
for a in b.skills.keys() { for agent_idx in batch.skills.keys() {
let agent = self.agents.get_mut(a).unwrap(); let agent = self.agents.get_mut(agent_idx).unwrap();
agent.last_time = if self.time { t } else { i64::MAX }; agent.last_time = if self.time { t } else { i64::MAX };
agent.message = b.forward_prior_out(a); agent.message = batch.forward_prior_out(agent_idx);
} }
k += 1; k += 1;
@@ -387,24 +386,21 @@ impl History {
} }
while self.time && self.batches.len() > k { while self.time && self.batches.len() > k {
let b = &mut self.batches[k]; let batch = &mut self.batches[k];
b.new_forward_info(&self.agents); batch.new_forward_info(&self.agents);
let intersect = this_agent // TODO: Is it faster to iterate over agents in batch instead?
.iter() for agent_idx in &this_agent {
.filter(|&agent| b.skills.contains_key(agent)) if let Some(skill) = batch.skills.get_mut(agent_idx) {
.cloned() skill.elapsed =
.collect::<Vec<_>>(); batch::compute_elapsed(self.agents[agent_idx].last_time, batch.time);
for agent in &intersect { let agent = self.agents.get_mut(agent_idx).unwrap();
b.skills.get_mut(agent).unwrap().elapsed =
batch::compute_elapsed(self.agents[agent].last_time, b.time);
let a = self.agents.get_mut(agent).unwrap(); agent.last_time = if self.time { batch.time } else { i64::MAX };
agent.message = batch.forward_prior_out(agent_idx);
a.last_time = if self.time { b.time } else { i64::MAX }; }
a.message = b.forward_prior_out(agent);
} }
k += 1; k += 1;
@@ -470,10 +466,11 @@ mod tests {
let observed = h.batches[1].skills[&a].posterior(); let observed = h.batches[1].skills[&a].posterior();
let w = [vec![1.0], vec![1.0]];
let p = Game::new( let p = Game::new(
h.batches[1].events[0].within_priors(false, false, &h.batches[1].skills, &h.agents), h.batches[1].events[0].within_priors(false, false, &h.batches[1].skills, &h.agents),
vec![0.0, 1.0], &[0.0, 1.0],
vec![], &w,
P_DRAW, P_DRAW,
) )
.posteriors(); .posteriors();

View File

@@ -10,14 +10,15 @@ mod approx;
pub mod batch; pub mod batch;
mod game; mod game;
pub mod gaussian; pub mod gaussian;
// mod gaussian2;
mod history; mod history;
mod matrix;
mod message; mod message;
pub mod player; pub mod player;
pub use game::Game; pub use game::Game;
pub use gaussian::Gaussian; pub use gaussian::Gaussian;
pub use history::History; pub use history::History;
use matrix::Matrix;
use message::DiffMessage; use message::DiffMessage;
pub use player::Player; pub use player::Player;
@@ -81,7 +82,7 @@ where
pub fn key(&self, idx: Index) -> Option<&K> { pub fn key(&self, idx: Index) -> Option<&K> {
self.0 self.0
.iter() .iter()
.find(|(_, &value)| value == idx) .find(|&(_, value)| *value == idx)
.map(|(key, _)| key) .map(|(key, _)| key)
} }
@@ -114,11 +115,7 @@ fn erfc(x: f64) -> f64 {
let r = t * (-z * z - 1.26551223 + t * h).exp(); let r = t * (-z * z - 1.26551223 + t * h).exp();
if x >= 0.0 { if x >= 0.0 { r } else { 2.0 - r }
r
} else {
2.0 - r
}
} }
fn erfc_inv(mut y: f64) -> f64 { fn erfc_inv(mut y: f64) -> f64 {
@@ -146,11 +143,7 @@ fn erfc_inv(mut y: f64) -> f64 {
x += err / (FRAC_2_SQRT_PI * (-(x.powi(2))).exp() - x * err) x += err / (FRAC_2_SQRT_PI * (-(x.powi(2))).exp() - x * err)
} }
if y < 1.0 { if y < 1.0 { x } else { -x }
x
} else {
-x
}
} }
fn ppf(p: f64, mu: f64, sigma: f64) -> f64 { fn ppf(p: f64, mu: f64, sigma: f64) -> f64 {
@@ -238,9 +231,9 @@ pub(crate) fn sort_time(xs: &[i64], reverse: bool) -> Vec<usize> {
let mut x = xs.iter().enumerate().collect::<Vec<_>>(); let mut x = xs.iter().enumerate().collect::<Vec<_>>();
if reverse { if reverse {
x.sort_by_key(|(_, &x)| Reverse(x)); x.sort_by_key(|&(_, x)| Reverse(x));
} else { } else {
x.sort_by_key(|(_, &x)| x); x.sort_by_key(|&(_, x)| x);
} }
x.into_iter().map(|(i, _)| i).collect() x.into_iter().map(|(i, _)| i).collect()
@@ -255,8 +248,72 @@ pub(crate) fn evidence(d: &[DiffMessage], margin: &[f64], tie: &[bool], e: usize
} }
} }
/// Calculates the match quality of the given rating groups. A result is the draw probability in the association
pub fn quality(rating_groups: &[&[Gaussian]], beta: f64) -> f64 {
let flatten_ratings = rating_groups
.iter()
.flat_map(|group| group.iter())
.collect::<Vec<_>>();
let flatten_weights = vec![1.0; flatten_ratings.len()].into_boxed_slice();
let length = flatten_ratings.len();
let mut mean_matrix = Matrix::new(length, 1);
for (i, rating) in flatten_ratings.iter().enumerate() {
mean_matrix[(i, 0)] = rating.mu;
}
let mut variance_matrix = Matrix::new(length, length);
for (i, rating) in flatten_ratings.iter().enumerate() {
variance_matrix[(i, i)] = rating.sigma.powi(2);
}
let mut rotated_a_matrix = Matrix::new(rating_groups.len() - 1, length);
let mut t = 0;
let mut x = 0;
for (row, group) in rating_groups.windows(2).enumerate() {
let current = group[0];
let next = group[1];
for n in t..t + current.len() {
rotated_a_matrix[(row, n)] = flatten_weights[n];
x += 1;
}
t += current.len();
for n in x..x + next.len() {
rotated_a_matrix[(row, n)] = -flatten_weights[n];
}
x += next.len();
}
let a_matrix = rotated_a_matrix.transpose();
let ata = beta.powi(2) * &rotated_a_matrix * &a_matrix;
let atsa = &rotated_a_matrix * &variance_matrix * &a_matrix;
let start = mean_matrix.transpose() * &a_matrix;
let middle = &ata + &atsa;
let end = &rotated_a_matrix * &mean_matrix;
let e_arg = (-0.5 * &start * &middle.inverse() * &end).determinant();
let s_arg = ata.determinant() / middle.determinant();
e_arg.exp() * s_arg.sqrt()
}
#[cfg(test)] #[cfg(test)]
mod tests { mod tests {
use ::approx::assert_ulps_eq;
use super::*; use super::*;
#[test] #[test]
@@ -268,4 +325,14 @@ mod tests {
fn test_sort_time() { fn test_sort_time() {
assert_eq!(sort_time(&[0, 1, 2, 0], true), vec![2, 1, 0, 3]); assert_eq!(sort_time(&[0, 1, 2, 0], true), vec![2, 1, 0, 3]);
} }
#[test]
fn test_quality() {
let a = Gaussian::from_ms(25.0, 3.0);
let b = Gaussian::from_ms(25.0, 3.0);
let q = quality(&[&[a], &[b]], 25.0 / 3.0 / 2.0);
assert_ulps_eq!(q, 0.8115343414514944, epsilon = 1e-6)
}
} }

213
src/matrix.rs Normal file
View File

@@ -0,0 +1,213 @@
use std::ops;
fn det(m: &[f64], x: usize) -> f64 {
if x == 1 {
m[0]
} else if x == 2 {
m[0] * m[3] - m[1] * m[2]
} else {
let mut d = 0.0;
for n in 0..x {
let ms = m
.iter()
.enumerate()
.skip(x)
.filter(|(i, _)| (i % x) != n)
.map(|(_, v)| *v)
.collect::<Vec<_>>();
d += (-1.0f64).powi(n as i32) * m[n] * det(&ms, x - 1);
}
d
}
}
#[derive(Clone, Debug)]
pub struct Matrix {
data: Box<[f64]>,
height: usize,
width: usize,
}
impl Matrix {
pub fn new(height: usize, width: usize) -> Matrix {
Matrix {
data: vec![0.0; height * width].into_boxed_slice(),
height,
width,
}
}
pub fn transpose(&self) -> Matrix {
let mut matrix = Matrix::new(self.width, self.height);
for c in 0..self.width {
for r in 0..self.height {
matrix[(c, r)] = self[(r, c)];
}
}
matrix
}
pub fn minor(&self, row_n: usize, col_n: usize) -> Matrix {
let mut matrix = Matrix::new(self.height - 1, self.width - 1);
let mut nr = 0;
for r in 0..self.height {
if r == row_n {
continue;
}
let mut nc = 0;
for c in 0..self.width {
if c == col_n {
continue;
}
matrix[(nr, nc)] = self[(r, c)];
nc += 1;
}
nr += 1;
}
matrix
}
pub fn determinant(&self) -> f64 {
debug_assert!(self.width == self.height);
det(&self.data, self.width)
}
pub fn adjugate(&self) -> Matrix {
debug_assert!(self.width == self.height);
let mut matrix = Matrix::new(self.height, self.width);
if matrix.height == 2 {
matrix[(0, 0)] = self[(1, 1)];
matrix[(0, 1)] = -self[(0, 1)];
matrix[(1, 0)] = -self[(1, 0)];
matrix[(1, 1)] = self[(0, 0)];
} else {
for r in 0..matrix.height {
for c in 0..matrix.width {
let sign = if (r + c) % 2 == 0 { 1.0 } else { -1.0 };
matrix[(r, c)] = self.minor(r, c).determinant() * sign;
}
}
}
matrix
}
pub fn inverse(&self) -> Matrix {
let mut matrix = Matrix::new(self.width, self.height);
if self.height == self.width && self.height == 1 {
matrix[(0, 0)] = 1.0 / self[(0, 0)];
} else {
panic!("eh, okey")
}
matrix
}
}
impl ops::Index<(usize, usize)> for Matrix {
type Output = f64;
fn index(&self, pos: (usize, usize)) -> &Self::Output {
&self.data[(self.width * pos.0) + pos.1]
}
}
impl ops::IndexMut<(usize, usize)> for Matrix {
fn index_mut(&mut self, pos: (usize, usize)) -> &mut Self::Output {
&mut self.data[(self.width * pos.0) + pos.1]
}
}
impl<'a> ops::Mul<&'a Matrix> for f64 {
type Output = Matrix;
fn mul(self, rhs: &'a Matrix) -> Matrix {
let mut matrix = Matrix::new(rhs.height, rhs.width);
for r in 0..rhs.height {
for c in 0..rhs.width {
matrix[(r, c)] = self * rhs[(r, c)];
}
}
matrix
}
}
impl<'a> ops::Mul<&'a Matrix> for Matrix {
type Output = Matrix;
fn mul(self, rhs: &'a Matrix) -> Matrix {
let mut matrix = Matrix::new(self.height, rhs.width);
for r in 0..matrix.height {
for c in 0..matrix.width {
let mut value = 0.0;
for x in 0..self.width {
value += self[(r, x)] * rhs[(x, c)];
}
matrix[(r, c)] = value;
}
}
matrix
}
}
impl<'a> ops::Mul<&'a Matrix> for &'a Matrix {
type Output = Matrix;
fn mul(self, rhs: &'a Matrix) -> Matrix {
let mut matrix = Matrix::new(self.height, rhs.width);
for r in 0..matrix.height {
for c in 0..matrix.width {
let mut value = 0.0;
for x in 0..self.width {
value += self[(r, x)] * rhs[(x, c)];
}
matrix[(r, c)] = value;
}
}
matrix
}
}
impl<'a> ops::Add<&'a Matrix> for &'a Matrix {
type Output = Matrix;
fn add(self, rhs: &'a Matrix) -> Matrix {
let mut matrix = Matrix::new(self.height, self.width);
for r in 0..matrix.height {
for c in 0..matrix.width {
matrix[(r, c)] = self[(r, c)] + rhs[(r, c)];
}
}
matrix
}
}

View File

@@ -15,14 +15,17 @@ impl TeamMessage {
} }
*/ */
#[inline]
pub(crate) fn posterior_win(&self) -> Gaussian { pub(crate) fn posterior_win(&self) -> Gaussian {
self.prior * self.likelihood_lose * self.likelihood_draw self.prior * self.likelihood_lose * self.likelihood_draw
} }
#[inline]
pub(crate) fn posterior_lose(&self) -> Gaussian { pub(crate) fn posterior_lose(&self) -> Gaussian {
self.prior * self.likelihood_win * self.likelihood_draw self.prior * self.likelihood_win * self.likelihood_draw
} }
#[inline]
pub(crate) fn likelihood(&self) -> Gaussian { pub(crate) fn likelihood(&self) -> Gaussian {
self.likelihood_win * self.likelihood_lose * self.likelihood_draw self.likelihood_win * self.likelihood_lose * self.likelihood_draw
} }