Port from julia version instead

This commit is contained in:
2022-06-18 22:27:38 +02:00
parent 36c3366990
commit dc10504b80
13 changed files with 1141 additions and 1213 deletions

View File

@@ -1,13 +1,15 @@
use std::collections::{HashMap, HashSet};
use crate::{Game, Gaussian, Player, PlayerIndex, N_INF};
use crate::{
agent::Agent, game::Game, gaussian::Gaussian, player::Player, tuple_gt, tuple_max, N_INF,
};
#[derive(Clone, Debug)]
pub struct Skill {
pub forward: Gaussian,
pub backward: Gaussian,
pub likelihood: Gaussian,
pub elapsed: f64,
pub(crate) struct Skill {
pub(crate) forward: Gaussian,
backward: Gaussian,
likelihood: Gaussian,
pub(crate) elapsed: u64,
pub(crate) online: Gaussian,
}
impl Default for Skill {
@@ -16,67 +18,30 @@ impl Default for Skill {
forward: N_INF,
backward: N_INF,
likelihood: N_INF,
elapsed: 0.0,
elapsed: 0,
online: N_INF,
}
}
}
#[derive(Clone, Copy, Debug)]
pub struct Agent {
pub player: Player,
pub message: Gaussian,
pub last_time: f64,
}
impl Agent {
pub fn new(player: Player, message: Gaussian, last_time: f64) -> Self {
Self {
player,
message,
last_time,
}
}
#[inline]
pub fn receive(&self, elapsed: f64) -> Gaussian {
if self.message != N_INF {
self.message.forget(self.player.gamma, elapsed)
} else {
self.player.prior
}
}
}
#[derive(Clone, Debug)]
pub struct Item {
index: PlayerIndex,
struct Item {
agent: String,
likelihood: Gaussian,
}
#[derive(Clone, Debug)]
pub struct Team {
struct Team {
items: Vec<Item>,
output: u16,
output: f64,
}
#[derive(Clone, Debug)]
pub struct Event {
struct Event {
teams: Vec<Team>,
pub evidence: f64,
evidence: f64,
weights: Vec<Vec<f64>>,
}
impl Event {
/*
pub fn names(&self) -> Vec<&str> {
self.teams
.iter()
.flat_map(|team| team.items.iter())
.map(|item| item.name.as_str())
.collect::<Vec<_>>()
}
*/
pub fn result(&self) -> Vec<u16> {
fn outputs(&self) -> Vec<f64> {
self.teams
.iter()
.map(|team| team.output)
@@ -84,75 +49,126 @@ impl Event {
}
}
fn compute_elapsed(last_time: f64, actual_time: f64) -> f64 {
if last_time == f64::NEG_INFINITY {
0.0
} else if last_time == f64::INFINITY {
1.0
} else {
actual_time - last_time
}
}
#[derive(Clone, Debug)]
pub struct Batch {
pub skills: HashMap<PlayerIndex, Skill>,
pub events: Vec<Event>,
pub time: f64,
pub(crate) struct Batch {
events: Vec<Event>,
pub(crate) skills: HashMap<String, Skill>,
pub(crate) time: u64,
p_draw: f64,
}
/*
fn test<S, I>(inp: S) where S: AsRef<[I]>, I: AsRef<[u8]> {
for a in inp.as_ref().iter() {
for b in a.as_ref().iter() {
println!("{}", b);
}
}
}
*/
impl Batch {
pub fn new(
composition: Vec<Vec<Vec<PlayerIndex>>>,
results: Vec<Vec<u16>>,
time: f64,
agents: &mut HashMap<PlayerIndex, Agent>,
pub(crate) fn new(
composition: Vec<Vec<Vec<&str>>>,
results: Vec<Vec<f64>>,
weights: Vec<Vec<Vec<f64>>>,
time: u64,
p_draw: f64,
agents: &mut HashMap<String, Agent>,
) -> Self {
assert!(
results.is_empty() || results.len() == composition.len(),
"TODO: Add a comment here"
);
assert!(
weights.is_empty() || weights.len() == composition.len(),
"TODO: Add a comment here"
);
let this_agent = composition
.iter()
.flatten()
.flatten()
.cloned()
.collect::<HashSet<_>>();
let elapsed = this_agent
.iter()
.map(|&a| (a, compute_elapsed(agents[a].last_time, time)))
.collect::<HashMap<_, _>>();
let skills = this_agent
.iter()
.map(|&a| {
(
a.to_string(),
Skill {
forward: agents[a].receive(elapsed[a]),
elapsed: elapsed[a],
..Default::default()
},
)
})
.collect::<HashMap<_, _>>();
let events = (0..composition.len())
.map(|e| {
let teams = (0..composition[e].len())
.map(|t| {
let items = (0..composition[e][t].len())
.map(|a| Item {
agent: composition[e][t][a].to_string(),
likelihood: N_INF,
})
.collect::<Vec<_>>();
Team {
items,
output: if results.is_empty() {
(composition[e].len() - (t + 1)) as f64
} else {
results[e][t]
},
}
})
.collect::<Vec<_>>();
Event {
teams,
evidence: 0.0,
weights: if weights.is_empty() {
Vec::new()
} else {
weights[e].clone()
},
}
})
.collect::<Vec<_>>();
let mut this = Self {
skills: HashMap::new(),
events: Vec::new(),
time,
events,
skills,
p_draw,
};
this.add_events(composition, results, agents);
this.iteration(0, agents);
this
}
pub fn add_events(
pub(crate) fn add_events(
&mut self,
composition: Vec<Vec<Vec<PlayerIndex>>>,
results: Vec<Vec<u16>>,
agents: &mut HashMap<PlayerIndex, Agent>,
composition: Vec<Vec<Vec<&str>>>,
results: Vec<Vec<f64>>,
weights: Vec<Vec<Vec<f64>>>,
agents: &mut HashMap<String, Agent>,
) {
let this_agent = composition
.iter()
.flatten()
.flatten()
.cloned()
.collect::<HashSet<_>>();
for a in this_agent {
let elapsed = compute_elapsed(agents[a].last_time, self.time);
if let Some(skill) = self.skills.get_mut(a) {
skill.forward = agents[a].receive(elapsed);
skill.elapsed = elapsed;
skill.forward = agents[a].receive(elapsed);
} else {
self.skills.insert(
*a,
a.to_string(),
Skill {
forward: agents[a].receive(elapsed),
elapsed,
@@ -169,14 +185,18 @@ impl Batch {
.map(|t| {
let items = (0..composition[e][t].len())
.map(|a| Item {
index: composition[e][t][a],
agent: composition[e][t][a].to_string(),
likelihood: N_INF,
})
.collect::<Vec<_>>();
Team {
items,
output: results[e][t],
output: if results.is_empty() {
(composition[e].len() - (t + 1)) as f64
} else {
results[e][t]
},
}
})
.collect::<Vec<_>>();
@@ -184,6 +204,11 @@ impl Batch {
let event = Event {
teams,
evidence: 0.0,
weights: if weights.is_empty() {
Vec::new()
} else {
weights[e].clone()
},
};
self.events.push(event);
@@ -192,33 +217,45 @@ impl Batch {
self.iteration(from, agents);
}
#[inline]
pub fn posterior(&self, agent: &PlayerIndex) -> Gaussian {
pub(crate) fn posterior(&self, agent: &str) -> Gaussian {
let skill = &self.skills[agent];
skill.likelihood * skill.backward * skill.forward
}
#[inline]
pub fn posteriors(&self) -> HashMap<PlayerIndex, Gaussian> {
pub(crate) fn posteriors(&self) -> HashMap<String, Gaussian> {
self.skills
.keys()
.map(|a| (*a, self.posterior(a)))
.map(|a| (a.to_string(), self.posterior(a)))
.collect::<HashMap<_, _>>()
}
#[inline]
fn within_prior(&self, item: &Item, agents: &mut HashMap<PlayerIndex, Agent>) -> Player {
let r = &agents[&item.index].player;
let g = self.posterior(&item.index) / item.likelihood;
fn within_prior(
&self,
item: &Item,
online: bool,
forward: bool,
agents: &mut HashMap<String, Agent>,
) -> Player {
let r = &agents[&item.agent].player;
Player::new(g, r.beta, r.gamma, N_INF)
if online {
Player::new(self.skills[&item.agent].online, r.beta, r.gamma)
} else if forward {
Player::new(self.skills[&item.agent].forward, r.beta, r.gamma)
} else {
let wp = self.posterior(&item.agent) / item.likelihood;
Player::new(wp, r.beta, r.gamma)
}
}
pub fn within_priors(
pub(crate) fn within_priors(
&self,
event: usize,
agents: &mut HashMap<PlayerIndex, Agent>,
online: bool,
forward: bool,
agents: &mut HashMap<String, Agent>,
) -> Vec<Vec<Player>> {
self.events[event]
.teams
@@ -226,23 +263,23 @@ impl Batch {
.map(|team| {
team.items
.iter()
.map(|item| self.within_prior(item, agents))
.map(|item| self.within_prior(item, online, forward, agents))
.collect::<Vec<_>>()
})
.collect::<Vec<_>>()
}
fn iteration(&mut self, from: usize, agents: &mut HashMap<PlayerIndex, Agent>) {
pub(crate) fn iteration(&mut self, from: usize, agents: &mut HashMap<String, Agent>) {
for e in from..self.events.len() {
let teams = self.within_priors(e, agents);
let result = self.events[e].result();
let teams = self.within_priors(e, false, false, agents);
let result = self.events[e].outputs();
let g = Game::new(teams, result, self.p_draw);
let g = Game::new(teams, result, self.events[e].weights.clone(), self.p_draw);
for (t, team) in self.events[e].teams.iter_mut().enumerate() {
for (i, item) in team.items.iter_mut().enumerate() {
self.skills.get_mut(&item.index).unwrap().likelihood =
(self.skills[&item.index].likelihood / item.likelihood)
self.skills.get_mut(&item.agent).unwrap().likelihood =
(self.skills[&item.agent].likelihood / item.likelihood)
* g.likelihoods[t][i];
item.likelihood = g.likelihoods[t][i];
@@ -253,27 +290,22 @@ impl Batch {
}
}
pub fn convergence(&mut self, agents: &mut HashMap<PlayerIndex, Agent>) -> usize {
pub(crate) fn convergence(&mut self, agents: &mut HashMap<String, Agent>) -> usize {
let epsilon = 1e-6;
let iterations = 20;
let mut step = (f64::INFINITY, f64::INFINITY);
let mut i = 0;
while (step.0 > epsilon || step.1 > epsilon) && i < iterations {
while tuple_gt(step, epsilon) && i < iterations {
let old = self.posteriors();
self.iteration(0, agents);
let new = self.posteriors();
step = old.iter().fold((0.0, 0.0), |(o_l, o_r), (a, old)| {
let (n_l, n_r) = old.delta(new[a]);
(
if n_l > o_l { n_l } else { o_l },
if n_r > o_r { n_r } else { o_r },
)
step = old.iter().fold((0.0, 0.0), |step, (a, old)| {
tuple_max(step, old.delta(new[a]))
});
i += 1;
@@ -282,18 +314,16 @@ impl Batch {
i
}
#[inline]
pub fn forward_prior_out(&self, agent: &PlayerIndex) -> Gaussian {
pub(crate) fn forward_prior_out(&self, agent: &str) -> Gaussian {
let skill = &self.skills[agent];
skill.forward * skill.likelihood
}
#[inline]
pub fn backward_prior_out(
pub(crate) fn backward_prior_out(
&self,
agent: &PlayerIndex,
agents: &mut HashMap<PlayerIndex, Agent>,
agent: &str,
agents: &mut HashMap<String, Agent>,
) -> Gaussian {
let skill = &self.skills[agent];
let n = skill.likelihood * skill.backward;
@@ -301,8 +331,7 @@ impl Batch {
n.forget(agents[agent].player.gamma, skill.elapsed)
}
#[inline]
pub fn new_backward_info(&mut self, agents: &mut HashMap<PlayerIndex, Agent>) {
pub(crate) fn new_backward_info(&mut self, agents: &mut HashMap<String, Agent>) {
for (agent, skill) in self.skills.iter_mut() {
skill.backward = agents[agent].message;
}
@@ -310,8 +339,7 @@ impl Batch {
self.iteration(0, agents);
}
#[inline]
pub fn new_forward_info(&mut self, agents: &mut HashMap<PlayerIndex, Agent>) {
pub(crate) fn new_forward_info(&mut self, agents: &mut HashMap<String, Agent>) {
for (agent, skill) in self.skills.iter_mut() {
skill.forward = agents[agent].receive(skill.elapsed);
}
@@ -320,60 +348,69 @@ impl Batch {
}
}
fn compute_elapsed(last_time: u64, actual_time: u64) -> u64 {
if last_time == u64::MIN {
0
} else if last_time == u64::MAX {
1
} else {
actual_time - last_time
}
}
#[cfg(test)]
mod tests {
use approx::assert_ulps_eq;
use crate::{agent::Agent, player::Player};
use super::*;
#[test]
fn test_one_event_each() {
let mut agents = HashMap::new();
let a = PlayerIndex::new(0);
let b = PlayerIndex::new(1);
let c = PlayerIndex::new(2);
let d = PlayerIndex::new(3);
let e = PlayerIndex::new(4);
let f = PlayerIndex::new(5);
for k in [a, b, c, d, e, f] {
let agent = Agent::new(
Player::new(
Gaussian::new(25.0, 25.0 / 3.0),
25.0 / 6.0,
25.0 / 300.0,
N_INF,
),
N_INF,
f64::NEG_INFINITY,
for agent in ["a", "b", "c", "d", "e", "f"] {
agents.insert(
agent.to_string(),
Agent {
player: Player::new(Gaussian::new(25.0, 25.0 / 3.0), 25.0 / 6.0, 25.0 / 300.0),
..Default::default()
},
);
agents.insert(k, agent);
}
let mut batch = Batch::new(
vec![
vec![vec![a], vec![b]],
vec![vec![c], vec![d]],
vec![vec![e], vec![f]],
vec![vec!["a"], vec!["b"]],
vec![vec!["c"], vec!["d"]],
vec![vec!["e"], vec!["f"]],
],
vec![vec![1, 0], vec![0, 1], vec![1, 0]],
vec![vec![1.0, 0.0], vec![0.0, 1.0], vec![1.0, 0.0]],
vec![],
0,
0.0,
&mut agents,
0.0,
);
let post = batch.posteriors();
assert_eq!(post[&a].mu(), 29.205220743876975);
assert_eq!(post[&a].sigma(), 7.194481422570443);
assert_ulps_eq!(post["a"].mu, 29.205220743876975, epsilon = 0.000001);
assert_ulps_eq!(post["a"].sigma, 7.194481422570443, epsilon = 0.000001);
assert_eq!(post[&b].mu(), 20.79477925612302);
assert_eq!(post[&b].sigma(), 7.194481422570443);
assert_ulps_eq!(post["b"].mu, 20.79477925612302, epsilon = 0.000001);
assert_ulps_eq!(post["b"].sigma, 7.194481422570443, epsilon = 0.000001);
assert_eq!(post[&c].mu(), 20.79477925612302);
assert_eq!(post[&c].sigma(), 7.194481422570443);
assert_ulps_eq!(post["c"].mu, 20.79477925612302, epsilon = 0.000001);
assert_ulps_eq!(post["c"].sigma, 7.194481422570443, epsilon = 0.000001);
assert_ulps_eq!(post["d"].mu, 29.205220743876975, epsilon = 0.000001);
assert_ulps_eq!(post["d"].sigma, 7.194481422570443, epsilon = 0.000001);
assert_ulps_eq!(post["e"].mu, 29.205220743876975, epsilon = 0.000001);
assert_ulps_eq!(post["e"].sigma, 7.194481422570443, epsilon = 0.000001);
assert_ulps_eq!(post["f"].mu, 20.79477925612302, epsilon = 0.000001);
assert_ulps_eq!(post["f"].sigma, 7.194481422570443, epsilon = 0.000001);
assert_eq!(batch.convergence(&mut agents), 1);
}
@@ -382,123 +419,102 @@ mod tests {
fn test_same_strength() {
let mut agents = HashMap::new();
let a = PlayerIndex::new(0);
let b = PlayerIndex::new(1);
let c = PlayerIndex::new(2);
let d = PlayerIndex::new(3);
let e = PlayerIndex::new(4);
let f = PlayerIndex::new(5);
for k in [a, b, c, d, e, f] {
let agent = Agent::new(
Player::new(
Gaussian::new(25.0, 25.0 / 3.0),
25.0 / 6.0,
25.0 / 300.0,
N_INF,
),
N_INF,
f64::NEG_INFINITY,
for agent in ["a", "b", "c", "d", "e", "f"] {
agents.insert(
agent.to_string(),
Agent {
player: Player::new(Gaussian::new(25.0, 25.0 / 3.0), 25.0 / 6.0, 25.0 / 300.0),
..Default::default()
},
);
agents.insert(k, agent);
}
let mut batch = Batch::new(
vec![
vec![vec![a], vec![b]],
vec![vec![a], vec![c]],
vec![vec![b], vec![c]],
vec![vec!["a"], vec!["b"]],
vec![vec!["a"], vec!["c"]],
vec![vec!["b"], vec!["c"]],
],
vec![vec![1, 0], vec![0, 1], vec![1, 0]],
2.0,
&mut agents,
vec![vec![1.0, 0.0], vec![0.0, 1.0], vec![1.0, 0.0]],
vec![],
0,
0.0,
&mut agents,
);
let post = batch.posteriors();
assert_eq!(post[&a].mu(), 24.96097857478182);
assert_eq!(post[&a].sigma(), 6.298544763358269);
assert_ulps_eq!(post["a"].mu, 24.96097857478182, epsilon = 0.000001);
assert_ulps_eq!(post["a"].sigma, 6.298544763358269, epsilon = 0.000001);
assert_eq!(post[&b].mu(), 27.095590669107086);
assert_eq!(post[&b].sigma(), 6.010330439043099);
assert_ulps_eq!(post["b"].mu, 27.095590669107086, epsilon = 0.000001);
assert_ulps_eq!(post["b"].sigma, 6.010330439043099, epsilon = 0.000001);
assert_eq!(post[&c].mu(), 24.88968178743119);
assert_eq!(post[&c].sigma(), 5.866311348102562);
assert_ulps_eq!(post["c"].mu, 24.88968178743119, epsilon = 0.000001);
assert_ulps_eq!(post["c"].sigma, 5.866311348102562, epsilon = 0.000001);
assert!(batch.convergence(&mut agents) > 1);
let post = batch.posteriors();
assert_ulps_eq!(post[&a].mu(), 25.000000, epsilon = 0.000001);
assert_ulps_eq!(post[&a].sigma(), 5.4192120, epsilon = 0.000001);
assert_ulps_eq!(post["a"].mu, 25.000000, epsilon = 0.000001);
assert_ulps_eq!(post["a"].sigma, 5.4192120, epsilon = 0.000001);
assert_ulps_eq!(post[&b].mu(), 25.000000, epsilon = 0.000001);
assert_ulps_eq!(post[&b].sigma(), 5.4192120, epsilon = 0.000001);
assert_ulps_eq!(post["b"].mu, 25.000000, epsilon = 0.000001);
assert_ulps_eq!(post["b"].sigma, 5.4192120, epsilon = 0.000001);
assert_ulps_eq!(post[&c].mu(), 25.000000, epsilon = 0.000001);
assert_ulps_eq!(post[&c].sigma(), 5.4192120, epsilon = 0.000001);
assert_ulps_eq!(post["c"].mu, 25.000000, epsilon = 0.000001);
assert_ulps_eq!(post["c"].sigma, 5.4192120, epsilon = 0.000001);
}
#[test]
fn test_add_events() {
let mut agents = HashMap::new();
let a = PlayerIndex::new(0);
let b = PlayerIndex::new(1);
let c = PlayerIndex::new(2);
let d = PlayerIndex::new(3);
let e = PlayerIndex::new(4);
let f = PlayerIndex::new(5);
for k in [a, b, c, d, e, f] {
let agent = Agent::new(
Player::new(
Gaussian::new(25.0, 25.0 / 3.0),
25.0 / 6.0,
25.0 / 300.0,
N_INF,
),
N_INF,
f64::NEG_INFINITY,
for agent in ["a", "b", "c", "d", "e", "f"] {
agents.insert(
agent.to_string(),
Agent {
player: Player::new(Gaussian::new(25.0, 25.0 / 3.0), 25.0 / 6.0, 25.0 / 300.0),
..Default::default()
},
);
agents.insert(k, agent);
}
let mut batch = Batch::new(
vec![
vec![vec![a], vec![b]],
vec![vec![a], vec![c]],
vec![vec![b], vec![c]],
vec![vec!["a"], vec!["b"]],
vec![vec!["a"], vec!["c"]],
vec![vec!["b"], vec!["c"]],
],
vec![vec![1, 0], vec![0, 1], vec![1, 0]],
vec![vec![1.0, 0.0], vec![0.0, 1.0], vec![1.0, 0.0]],
vec![],
0,
0.0,
&mut agents,
0.0,
);
batch.convergence(&mut agents);
let p = batch.posteriors();
let post = batch.posteriors();
assert_ulps_eq!(p[&a].mu(), 25.000000, epsilon = 0.000001);
assert_ulps_eq!(p[&a].sigma(), 5.4192120, epsilon = 0.000001);
assert_ulps_eq!(post["a"].mu, 25.000000, epsilon = 0.000001);
assert_ulps_eq!(post["a"].sigma, 5.4192120, epsilon = 0.000001);
assert_ulps_eq!(p[&b].mu(), 25.000000, epsilon = 0.000001);
assert_ulps_eq!(p[&b].sigma(), 5.4192120, epsilon = 0.000001);
assert_ulps_eq!(post["b"].mu, 25.000000, epsilon = 0.000001);
assert_ulps_eq!(post["b"].sigma, 5.4192120, epsilon = 0.000001);
assert_ulps_eq!(p[&c].mu(), 25.000000, epsilon = 0.000001);
assert_ulps_eq!(p[&c].sigma(), 5.4192120, epsilon = 0.000001);
assert_ulps_eq!(post["c"].mu, 25.000000, epsilon = 0.000001);
assert_ulps_eq!(post["c"].sigma, 5.4192120, epsilon = 0.000001);
batch.add_events(
vec![
vec![vec![a], vec![b]],
vec![vec![a], vec![c]],
vec![vec![b], vec![c]],
vec![vec!["a"], vec!["b"]],
vec![vec!["a"], vec!["c"]],
vec![vec!["b"], vec!["c"]],
],
vec![vec![1, 0], vec![0, 1], vec![1, 0]],
vec![vec![1.0, 0.0], vec![0.0, 1.0], vec![1.0, 0.0]],
vec![],
&mut agents,
);
@@ -506,15 +522,15 @@ mod tests {
batch.convergence(&mut agents);
let p = batch.posteriors();
let post = batch.posteriors();
assert_ulps_eq!(p[&a].mu(), 25.00000315330858, epsilon = 0.000001);
assert_ulps_eq!(p[&a].sigma(), 3.880150268080797, epsilon = 0.000001);
assert_ulps_eq!(post["a"].mu, 25.00000315330858, epsilon = 0.000001);
assert_ulps_eq!(post["a"].sigma, 3.880150268080797, epsilon = 0.000001);
assert_ulps_eq!(p[&b].mu(), 25.00000315330858, epsilon = 0.000001);
assert_ulps_eq!(p[&b].sigma(), 3.880150268080797, epsilon = 0.000001);
assert_ulps_eq!(post["b"].mu, 25.00000315330858, epsilon = 0.000001);
assert_ulps_eq!(post["b"].sigma, 3.880150268080797, epsilon = 0.000001);
assert_ulps_eq!(p[&c].mu(), 25.00000315330858, epsilon = 0.000001);
assert_ulps_eq!(p[&c].sigma(), 3.880150268080797, epsilon = 0.000001);
assert_ulps_eq!(post["c"].mu, 25.00000315330858, epsilon = 0.000001);
assert_ulps_eq!(post["c"].sigma, 3.880150268080797, epsilon = 0.000001);
}
}