Begin working on batch.
This commit is contained in:
284
src/batch.rs
Normal file
284
src/batch.rs
Normal file
@@ -0,0 +1,284 @@
|
||||
use std::collections::{HashMap, HashSet};
|
||||
|
||||
use crate::{Game, Gaussian, Player, N_INF};
|
||||
|
||||
pub struct Skill {
|
||||
pub forward: Gaussian,
|
||||
pub backward: Gaussian,
|
||||
pub likelihood: Gaussian,
|
||||
pub elapsed: f64,
|
||||
}
|
||||
|
||||
impl Default for Skill {
|
||||
fn default() -> Self {
|
||||
Self {
|
||||
forward: N_INF,
|
||||
backward: N_INF,
|
||||
likelihood: N_INF,
|
||||
elapsed: 0.0,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
pub struct Agent {
|
||||
pub player: Player,
|
||||
pub message: Gaussian,
|
||||
pub last_time: f64,
|
||||
}
|
||||
|
||||
impl Agent {
|
||||
pub fn new(player: Player, message: Gaussian, last_time: f64) -> Self {
|
||||
Self {
|
||||
player,
|
||||
message,
|
||||
last_time,
|
||||
}
|
||||
}
|
||||
|
||||
pub fn receive(&self, elapsed: f64) -> Gaussian {
|
||||
if self.message != N_INF {
|
||||
self.message.forget(self.player.gamma, elapsed)
|
||||
} else {
|
||||
self.player.prior
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
pub struct Item {
|
||||
name: String,
|
||||
likelihood: Gaussian,
|
||||
}
|
||||
|
||||
pub struct Team {
|
||||
items: Vec<Item>,
|
||||
output: u16,
|
||||
}
|
||||
|
||||
pub struct Event {
|
||||
teams: Vec<Team>,
|
||||
evidence: f64,
|
||||
}
|
||||
|
||||
impl Event {
|
||||
pub fn names(&self) -> Vec<&str> {
|
||||
self.teams
|
||||
.iter()
|
||||
.flat_map(|team| team.items.iter())
|
||||
.map(|item| item.name.as_str())
|
||||
.collect::<Vec<_>>()
|
||||
}
|
||||
|
||||
pub fn result(&self) -> Vec<u16> {
|
||||
self.teams
|
||||
.iter()
|
||||
.map(|team| team.output)
|
||||
.collect::<Vec<_>>()
|
||||
}
|
||||
}
|
||||
|
||||
fn compute_elapsed(last_time: f64, actual_time: f64) -> f64 {
|
||||
if last_time == f64::NEG_INFINITY {
|
||||
0.0
|
||||
} else if last_time == f64::INFINITY {
|
||||
1.0
|
||||
} else {
|
||||
actual_time - last_time
|
||||
}
|
||||
}
|
||||
|
||||
pub struct Batch {
|
||||
skills: HashMap<String, Skill>,
|
||||
events: Vec<Event>,
|
||||
time: f64,
|
||||
agents: HashMap<String, Agent>,
|
||||
p_draw: f64,
|
||||
}
|
||||
|
||||
impl Batch {
|
||||
pub fn new(
|
||||
composition: Vec<Vec<Vec<&str>>>,
|
||||
results: Vec<Vec<u16>>,
|
||||
time: f64,
|
||||
agents: HashMap<String, Agent>,
|
||||
p_draw: f64,
|
||||
) -> Self {
|
||||
let mut this = Self {
|
||||
skills: HashMap::new(),
|
||||
events: Vec::new(),
|
||||
time,
|
||||
agents,
|
||||
p_draw,
|
||||
};
|
||||
|
||||
this.add_events(composition, results);
|
||||
|
||||
this
|
||||
}
|
||||
|
||||
pub fn add_events(&mut self, composition: Vec<Vec<Vec<&str>>>, results: Vec<Vec<u16>>) {
|
||||
let this_agent = composition
|
||||
.iter()
|
||||
.flat_map(|teams| teams.iter())
|
||||
.flat_map(|team| team.iter())
|
||||
.cloned()
|
||||
.collect::<HashSet<_>>();
|
||||
|
||||
for a in this_agent {
|
||||
let elapsed = compute_elapsed(self.agents[a].last_time, self.time);
|
||||
|
||||
if let Some(skill) = self.skills.get_mut(a) {
|
||||
skill.elapsed = elapsed;
|
||||
skill.forward = self.agents[a].receive(elapsed);
|
||||
} else {
|
||||
self.skills.insert(
|
||||
a.to_string(),
|
||||
Skill {
|
||||
forward: self.agents[a].receive(elapsed),
|
||||
..Default::default()
|
||||
},
|
||||
);
|
||||
}
|
||||
}
|
||||
|
||||
let from = self.events.len() + 1;
|
||||
|
||||
for e in 0..composition.len() {
|
||||
let teams = (0..composition[e].len())
|
||||
.map(|t| {
|
||||
let items = (0..composition[e][t].len())
|
||||
.map(|a| Item {
|
||||
name: composition[e][t][a].to_string(),
|
||||
likelihood: N_INF,
|
||||
})
|
||||
.collect::<Vec<_>>();
|
||||
|
||||
Team {
|
||||
items,
|
||||
output: results[e][t],
|
||||
}
|
||||
})
|
||||
.collect::<Vec<_>>();
|
||||
|
||||
let event = Event {
|
||||
teams,
|
||||
evidence: 0.0,
|
||||
};
|
||||
|
||||
self.events.push(event);
|
||||
}
|
||||
|
||||
self.iteration(from);
|
||||
}
|
||||
|
||||
fn posterior(&self, agent: &str) -> Gaussian {
|
||||
let skill = &self.skills[agent];
|
||||
|
||||
skill.likelihood * skill.backward * skill.forward
|
||||
}
|
||||
|
||||
fn posteriors(&self) -> HashMap<&str, Gaussian> {
|
||||
self.skills
|
||||
.keys()
|
||||
.map(|a| (a.as_str(), self.posterior(a)))
|
||||
.collect::<HashMap<_, _>>()
|
||||
}
|
||||
|
||||
fn within_prior(&self, item: &Item) -> Player {
|
||||
let r = &self.agents[&item.name].player;
|
||||
let g = self.posterior(&item.name) / item.likelihood;
|
||||
|
||||
Player::new(g, r.beta, r.gamma, N_INF)
|
||||
}
|
||||
|
||||
fn within_priors(&self, event: usize) -> Vec<Vec<Player>> {
|
||||
self.events[event]
|
||||
.teams
|
||||
.iter()
|
||||
.map(|team| {
|
||||
team.items
|
||||
.iter()
|
||||
.map(|item| self.within_prior(item))
|
||||
.collect::<Vec<_>>()
|
||||
})
|
||||
.collect::<Vec<_>>()
|
||||
}
|
||||
|
||||
fn iteration(&mut self, from: usize) {
|
||||
for e in from..self.events.len() {
|
||||
let teams = self.within_priors(e);
|
||||
let result = self.events[e].result();
|
||||
|
||||
let g = Game::new(teams, result, self.p_draw);
|
||||
|
||||
for (t, team) in self.events[e].teams.iter_mut().enumerate() {
|
||||
for (i, item) in team.items.iter_mut().enumerate() {
|
||||
self.skills.get_mut(&item.name).unwrap().likelihood =
|
||||
(self.skills[&item.name].likelihood / item.likelihood)
|
||||
* g.likelihoods[t][i];
|
||||
|
||||
item.likelihood = g.likelihoods[t][i];
|
||||
}
|
||||
}
|
||||
|
||||
self.events[e].evidence = g.evidence;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::*;
|
||||
|
||||
#[test]
|
||||
fn test_one_event_each() {
|
||||
let mut agents = HashMap::new();
|
||||
|
||||
for k in ["a", "b", "c", "d", "e", "f"] {
|
||||
let agent = Agent::new(
|
||||
Player::new(
|
||||
Gaussian::new(25.0, 25.0 / 3.0),
|
||||
25.0 / 6.0,
|
||||
25.0 / 300.0,
|
||||
N_INF,
|
||||
),
|
||||
N_INF,
|
||||
f64::NEG_INFINITY,
|
||||
);
|
||||
|
||||
agents.insert(k.to_string(), agent);
|
||||
}
|
||||
|
||||
let b = Batch::new(
|
||||
vec![
|
||||
vec![vec!["a"], vec!["b"]],
|
||||
vec![vec!["c"], vec!["d"]],
|
||||
vec![vec!["e"], vec!["f"]],
|
||||
],
|
||||
vec![vec![1, 0], vec![0, 1], vec![1, 0]],
|
||||
0.0,
|
||||
agents,
|
||||
0.0,
|
||||
);
|
||||
|
||||
let post = b.posteriors();
|
||||
|
||||
assert_eq!(post["a"].mu(), 29.205);
|
||||
assert_eq!(post["a"].sigma(), 7.194)
|
||||
|
||||
/*
|
||||
agents = dict()
|
||||
for k in ["a", "b", "c", "d", "e", "f"]:
|
||||
agents[k] = ttt.Agent(ttt.Player(ttt.Gaussian(25., 25.0/3), 25.0/6, 25.0/300 ) , ttt.Ninf, -ttt.inf)
|
||||
b = ttt.Batch(composition=[ [["a"],["b"]], [["c"],["d"]] , [["e"],["f"]] ], results= [[1,0],[0,1],[1,0]], time = 0, agents=agents)
|
||||
post = b.posteriors()
|
||||
self.assertAlmostEqual(post["a"].mu,29.205,3)
|
||||
self.assertAlmostEqual(post["a"].sigma,7.194,3)
|
||||
|
||||
self.assertAlmostEqual(post["b"].mu,20.795,3)
|
||||
self.assertAlmostEqual(post["b"].sigma,7.194,3)
|
||||
self.assertAlmostEqual(post["c"].mu,20.795,3)
|
||||
self.assertAlmostEqual(post["c"].sigma,7.194,3)
|
||||
self.assertEqual(b.convergence(),1)
|
||||
*/
|
||||
}
|
||||
}
|
||||
@@ -40,11 +40,8 @@ impl Gaussian {
|
||||
self.sigma.powi(-2)
|
||||
}
|
||||
|
||||
pub fn forget(&self, gamma: f64, t: u32) -> Self {
|
||||
Self::new(
|
||||
self.mu,
|
||||
(self.sigma().powi(2) + t as f64 * gamma.powi(2)).sqrt(),
|
||||
)
|
||||
pub fn forget(&self, gamma: f64, t: f64) -> Self {
|
||||
Self::new(self.mu, (self.sigma().powi(2) + t * gamma.powi(2)).sqrt())
|
||||
}
|
||||
|
||||
pub fn delta(&self, m: Gaussian) -> (f64, f64) {
|
||||
|
||||
@@ -1,3 +1,4 @@
|
||||
mod batch;
|
||||
mod game;
|
||||
mod gaussian;
|
||||
mod history;
|
||||
@@ -6,6 +7,7 @@ mod player;
|
||||
mod utils;
|
||||
mod variable;
|
||||
|
||||
pub use batch::*;
|
||||
pub use game::*;
|
||||
pub use gaussian::*;
|
||||
pub use history::*;
|
||||
|
||||
@@ -6,7 +6,7 @@ use crate::{Gaussian, BETA, GAMMA, N_INF};
|
||||
pub struct Player {
|
||||
pub prior: Gaussian,
|
||||
pub beta: f64,
|
||||
gamma: f64,
|
||||
pub gamma: f64,
|
||||
prior_draw: Gaussian,
|
||||
}
|
||||
|
||||
|
||||
Reference in New Issue
Block a user