Begin working on batch.

This commit is contained in:
2022-06-12 21:02:57 +02:00
parent de58d01322
commit ae1c765dbb
4 changed files with 289 additions and 6 deletions

284
src/batch.rs Normal file
View File

@@ -0,0 +1,284 @@
use std::collections::{HashMap, HashSet};
use crate::{Game, Gaussian, Player, N_INF};
pub struct Skill {
pub forward: Gaussian,
pub backward: Gaussian,
pub likelihood: Gaussian,
pub elapsed: f64,
}
impl Default for Skill {
fn default() -> Self {
Self {
forward: N_INF,
backward: N_INF,
likelihood: N_INF,
elapsed: 0.0,
}
}
}
pub struct Agent {
pub player: Player,
pub message: Gaussian,
pub last_time: f64,
}
impl Agent {
pub fn new(player: Player, message: Gaussian, last_time: f64) -> Self {
Self {
player,
message,
last_time,
}
}
pub fn receive(&self, elapsed: f64) -> Gaussian {
if self.message != N_INF {
self.message.forget(self.player.gamma, elapsed)
} else {
self.player.prior
}
}
}
pub struct Item {
name: String,
likelihood: Gaussian,
}
pub struct Team {
items: Vec<Item>,
output: u16,
}
pub struct Event {
teams: Vec<Team>,
evidence: f64,
}
impl Event {
pub fn names(&self) -> Vec<&str> {
self.teams
.iter()
.flat_map(|team| team.items.iter())
.map(|item| item.name.as_str())
.collect::<Vec<_>>()
}
pub fn result(&self) -> Vec<u16> {
self.teams
.iter()
.map(|team| team.output)
.collect::<Vec<_>>()
}
}
fn compute_elapsed(last_time: f64, actual_time: f64) -> f64 {
if last_time == f64::NEG_INFINITY {
0.0
} else if last_time == f64::INFINITY {
1.0
} else {
actual_time - last_time
}
}
pub struct Batch {
skills: HashMap<String, Skill>,
events: Vec<Event>,
time: f64,
agents: HashMap<String, Agent>,
p_draw: f64,
}
impl Batch {
pub fn new(
composition: Vec<Vec<Vec<&str>>>,
results: Vec<Vec<u16>>,
time: f64,
agents: HashMap<String, Agent>,
p_draw: f64,
) -> Self {
let mut this = Self {
skills: HashMap::new(),
events: Vec::new(),
time,
agents,
p_draw,
};
this.add_events(composition, results);
this
}
pub fn add_events(&mut self, composition: Vec<Vec<Vec<&str>>>, results: Vec<Vec<u16>>) {
let this_agent = composition
.iter()
.flat_map(|teams| teams.iter())
.flat_map(|team| team.iter())
.cloned()
.collect::<HashSet<_>>();
for a in this_agent {
let elapsed = compute_elapsed(self.agents[a].last_time, self.time);
if let Some(skill) = self.skills.get_mut(a) {
skill.elapsed = elapsed;
skill.forward = self.agents[a].receive(elapsed);
} else {
self.skills.insert(
a.to_string(),
Skill {
forward: self.agents[a].receive(elapsed),
..Default::default()
},
);
}
}
let from = self.events.len() + 1;
for e in 0..composition.len() {
let teams = (0..composition[e].len())
.map(|t| {
let items = (0..composition[e][t].len())
.map(|a| Item {
name: composition[e][t][a].to_string(),
likelihood: N_INF,
})
.collect::<Vec<_>>();
Team {
items,
output: results[e][t],
}
})
.collect::<Vec<_>>();
let event = Event {
teams,
evidence: 0.0,
};
self.events.push(event);
}
self.iteration(from);
}
fn posterior(&self, agent: &str) -> Gaussian {
let skill = &self.skills[agent];
skill.likelihood * skill.backward * skill.forward
}
fn posteriors(&self) -> HashMap<&str, Gaussian> {
self.skills
.keys()
.map(|a| (a.as_str(), self.posterior(a)))
.collect::<HashMap<_, _>>()
}
fn within_prior(&self, item: &Item) -> Player {
let r = &self.agents[&item.name].player;
let g = self.posterior(&item.name) / item.likelihood;
Player::new(g, r.beta, r.gamma, N_INF)
}
fn within_priors(&self, event: usize) -> Vec<Vec<Player>> {
self.events[event]
.teams
.iter()
.map(|team| {
team.items
.iter()
.map(|item| self.within_prior(item))
.collect::<Vec<_>>()
})
.collect::<Vec<_>>()
}
fn iteration(&mut self, from: usize) {
for e in from..self.events.len() {
let teams = self.within_priors(e);
let result = self.events[e].result();
let g = Game::new(teams, result, self.p_draw);
for (t, team) in self.events[e].teams.iter_mut().enumerate() {
for (i, item) in team.items.iter_mut().enumerate() {
self.skills.get_mut(&item.name).unwrap().likelihood =
(self.skills[&item.name].likelihood / item.likelihood)
* g.likelihoods[t][i];
item.likelihood = g.likelihoods[t][i];
}
}
self.events[e].evidence = g.evidence;
}
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_one_event_each() {
let mut agents = HashMap::new();
for k in ["a", "b", "c", "d", "e", "f"] {
let agent = Agent::new(
Player::new(
Gaussian::new(25.0, 25.0 / 3.0),
25.0 / 6.0,
25.0 / 300.0,
N_INF,
),
N_INF,
f64::NEG_INFINITY,
);
agents.insert(k.to_string(), agent);
}
let b = Batch::new(
vec![
vec![vec!["a"], vec!["b"]],
vec![vec!["c"], vec!["d"]],
vec![vec!["e"], vec!["f"]],
],
vec![vec![1, 0], vec![0, 1], vec![1, 0]],
0.0,
agents,
0.0,
);
let post = b.posteriors();
assert_eq!(post["a"].mu(), 29.205);
assert_eq!(post["a"].sigma(), 7.194)
/*
agents = dict()
for k in ["a", "b", "c", "d", "e", "f"]:
agents[k] = ttt.Agent(ttt.Player(ttt.Gaussian(25., 25.0/3), 25.0/6, 25.0/300 ) , ttt.Ninf, -ttt.inf)
b = ttt.Batch(composition=[ [["a"],["b"]], [["c"],["d"]] , [["e"],["f"]] ], results= [[1,0],[0,1],[1,0]], time = 0, agents=agents)
post = b.posteriors()
self.assertAlmostEqual(post["a"].mu,29.205,3)
self.assertAlmostEqual(post["a"].sigma,7.194,3)
self.assertAlmostEqual(post["b"].mu,20.795,3)
self.assertAlmostEqual(post["b"].sigma,7.194,3)
self.assertAlmostEqual(post["c"].mu,20.795,3)
self.assertAlmostEqual(post["c"].sigma,7.194,3)
self.assertEqual(b.convergence(),1)
*/
}
}

View File

@@ -40,11 +40,8 @@ impl Gaussian {
self.sigma.powi(-2) self.sigma.powi(-2)
} }
pub fn forget(&self, gamma: f64, t: u32) -> Self { pub fn forget(&self, gamma: f64, t: f64) -> Self {
Self::new( Self::new(self.mu, (self.sigma().powi(2) + t * gamma.powi(2)).sqrt())
self.mu,
(self.sigma().powi(2) + t as f64 * gamma.powi(2)).sqrt(),
)
} }
pub fn delta(&self, m: Gaussian) -> (f64, f64) { pub fn delta(&self, m: Gaussian) -> (f64, f64) {

View File

@@ -1,3 +1,4 @@
mod batch;
mod game; mod game;
mod gaussian; mod gaussian;
mod history; mod history;
@@ -6,6 +7,7 @@ mod player;
mod utils; mod utils;
mod variable; mod variable;
pub use batch::*;
pub use game::*; pub use game::*;
pub use gaussian::*; pub use gaussian::*;
pub use history::*; pub use history::*;

View File

@@ -6,7 +6,7 @@ use crate::{Gaussian, BETA, GAMMA, N_INF};
pub struct Player { pub struct Player {
pub prior: Gaussian, pub prior: Gaussian,
pub beta: f64, pub beta: f64,
gamma: f64, pub gamma: f64,
prior_draw: Gaussian, prior_draw: Gaussian,
} }