Added more functions to History
This commit is contained in:
@@ -170,7 +170,7 @@ impl History {
|
||||
pub fn convergence(&mut self) -> ((f64, f64), usize) {
|
||||
let epsilon = 1e-6;
|
||||
let iterations = 30;
|
||||
let verbose = false;
|
||||
let verbose = true;
|
||||
|
||||
let mut step = (f64::INFINITY, f64::INFINITY);
|
||||
let mut i = 0;
|
||||
@@ -196,12 +196,30 @@ impl History {
|
||||
(step, i)
|
||||
}
|
||||
|
||||
fn learning_curves(&self) {
|
||||
todo!()
|
||||
pub fn learning_curves(&self) -> HashMap<String, Vec<(f64, Gaussian)>> {
|
||||
let mut data: HashMap<String, Vec<(f64, Gaussian)>> = HashMap::new();
|
||||
|
||||
for b in &self.batches {
|
||||
for agent in b.skills.keys() {
|
||||
let point = (b.time, b.posterior(agent));
|
||||
|
||||
if let Some(entry) = data.get_mut(agent) {
|
||||
entry.push(point);
|
||||
} else {
|
||||
data.insert(agent.to_string(), vec![point]);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
data
|
||||
}
|
||||
|
||||
fn log_evidence(&self) {
|
||||
todo!()
|
||||
pub fn log_evidence(&self) -> f64 {
|
||||
self.batches
|
||||
.iter()
|
||||
.flat_map(|batch| batch.events.iter())
|
||||
.map(|event| event.evidence.ln())
|
||||
.sum()
|
||||
}
|
||||
}
|
||||
|
||||
@@ -444,4 +462,71 @@ mod tests {
|
||||
epsilon = 0.000001
|
||||
);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_learning_curves() {
|
||||
let composition = vec![
|
||||
vec![vec!["aj"], vec!["bj"]],
|
||||
vec![vec!["bj"], vec!["cj"]],
|
||||
vec![vec!["cj"], vec!["aj"]],
|
||||
];
|
||||
let results = vec![vec![1, 0], vec![1, 0], vec![1, 0]];
|
||||
let times = vec![5, 6, 7];
|
||||
|
||||
let mut priors = HashMap::new();
|
||||
|
||||
for k in ["aj", "bj", "cj"] {
|
||||
let player = Player::new(
|
||||
Gaussian::new(25.0, 25.0 / 3.0),
|
||||
25.0 / 6.0,
|
||||
25.0 / 300.0,
|
||||
N_INF,
|
||||
);
|
||||
|
||||
priors.insert(k.to_string(), player);
|
||||
}
|
||||
|
||||
let mut h = History::new(
|
||||
composition,
|
||||
results,
|
||||
times,
|
||||
priors,
|
||||
MU,
|
||||
BETA,
|
||||
SIGMA,
|
||||
GAMMA,
|
||||
P_DRAW,
|
||||
);
|
||||
|
||||
h.convergence();
|
||||
|
||||
let lc = h.learning_curves();
|
||||
|
||||
let aj_e = lc["aj"].len();
|
||||
let cj_e = lc["cj"].len();
|
||||
|
||||
assert_eq!(lc["aj"][0].0, 5.0);
|
||||
assert_eq!(lc["aj"][aj_e - 1].0, 7.0);
|
||||
|
||||
assert_ulps_eq!(
|
||||
lc["aj"][aj_e - 1].1.mu(),
|
||||
24.99999999569006,
|
||||
epsilon = 0.000001
|
||||
);
|
||||
assert_ulps_eq!(
|
||||
lc["aj"][aj_e - 1].1.sigma(),
|
||||
5.419212002171145,
|
||||
epsilon = 0.000001
|
||||
);
|
||||
assert_ulps_eq!(
|
||||
lc["cj"][cj_e - 1].1.mu(),
|
||||
24.999999998686533,
|
||||
epsilon = 0.000001
|
||||
);
|
||||
assert_ulps_eq!(
|
||||
lc["cj"][cj_e - 1].1.sigma(),
|
||||
5.419212002245715,
|
||||
epsilon = 0.000001
|
||||
);
|
||||
}
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user