More test passing for History

This commit is contained in:
2022-06-13 11:04:05 +02:00
parent 4227617513
commit 4a13e4dcd2
5 changed files with 349 additions and 93 deletions

View File

@@ -2,7 +2,7 @@ use std::collections::{HashMap, HashSet};
use crate::{Game, Gaussian, Player, N_INF};
#[derive(Clone)]
#[derive(Clone, Debug)]
pub struct Skill {
pub forward: Gaussian,
pub backward: Gaussian,
@@ -96,7 +96,6 @@ pub struct Batch {
pub skills: HashMap<String, Skill>,
events: Vec<Event>,
time: f64,
agents: HashMap<String, Agent>,
p_draw: f64,
}
@@ -105,23 +104,27 @@ impl Batch {
composition: Vec<Vec<Vec<&str>>>,
results: Vec<Vec<u16>>,
time: f64,
agents: HashMap<String, Agent>,
agents: &mut HashMap<String, Agent>,
p_draw: f64,
) -> Self {
let mut this = Self {
skills: HashMap::new(),
events: Vec::new(),
time,
agents,
p_draw,
};
this.add_events(composition, results);
this.add_events(composition, results, agents);
this
}
pub fn add_events(&mut self, composition: Vec<Vec<Vec<&str>>>, results: Vec<Vec<u16>>) {
pub fn add_events(
&mut self,
composition: Vec<Vec<Vec<&str>>>,
results: Vec<Vec<u16>>,
agents: &mut HashMap<String, Agent>,
) {
let this_agent = composition
.iter()
.flat_map(|teams| teams.iter())
@@ -130,16 +133,16 @@ impl Batch {
.collect::<HashSet<_>>();
for a in this_agent {
let elapsed = compute_elapsed(self.agents[a].last_time, self.time);
let elapsed = compute_elapsed(agents[a].last_time, self.time);
if let Some(skill) = self.skills.get_mut(a) {
skill.elapsed = elapsed;
skill.forward = self.agents[a].receive(elapsed);
skill.forward = agents[a].receive(elapsed);
} else {
self.skills.insert(
a.to_string(),
Skill {
forward: self.agents[a].receive(elapsed),
forward: agents[a].receive(elapsed),
..Default::default()
},
);
@@ -173,7 +176,7 @@ impl Batch {
self.events.push(event);
}
self.iteration(from);
self.iteration(from, agents);
}
pub fn posterior(&self, agent: &str) -> Gaussian {
@@ -189,29 +192,33 @@ impl Batch {
.collect::<HashMap<_, _>>()
}
fn within_prior(&self, item: &Item) -> Player {
let r = &self.agents[&item.name].player;
fn within_prior(&self, item: &Item, agents: &mut HashMap<String, Agent>) -> Player {
let r = &agents[&item.name].player;
let g = self.posterior(&item.name) / item.likelihood;
Player::new(g, r.beta, r.gamma, N_INF)
}
pub fn within_priors(&self, event: usize) -> Vec<Vec<Player>> {
pub fn within_priors(
&self,
event: usize,
agents: &mut HashMap<String, Agent>,
) -> Vec<Vec<Player>> {
self.events[event]
.teams
.iter()
.map(|team| {
team.items
.iter()
.map(|item| self.within_prior(item))
.map(|item| self.within_prior(item, agents))
.collect::<Vec<_>>()
})
.collect::<Vec<_>>()
}
fn iteration(&mut self, from: usize) {
fn iteration(&mut self, from: usize, agents: &mut HashMap<String, Agent>) {
for e in from..self.events.len() {
let teams = self.within_priors(e);
let teams = self.within_priors(e, agents);
let result = self.events[e].result();
let g = Game::new(teams, result, self.p_draw);
@@ -230,7 +237,7 @@ impl Batch {
}
}
pub fn convergence(&mut self) -> usize {
pub fn convergence(&mut self, agents: &mut HashMap<String, Agent>) -> usize {
let epsilon = 1e-6;
let iterations = 20;
@@ -240,7 +247,7 @@ impl Batch {
while (step.0 > epsilon || step.1 > epsilon) && i < iterations {
let old = self.posteriors();
self.iteration(0);
self.iteration(0, agents);
let new = self.posteriors();
@@ -259,36 +266,34 @@ impl Batch {
i
}
/*
def convergence(self, epsilon=1e-6, iterations = 20):
step, i = (inf, inf), 0
while gr_tuple(step, epsilon) and (i < iterations):
old = self.posteriors().copy()
self.iteration()
step = dict_diff(old, self.posteriors())
i += 1
return i
*/
pub fn forward_prior_out(&self, agent: &str) -> Gaussian {
let skill = &self.skills[agent];
skill.forward * skill.likelihood
}
/*
def backward_prior_out(self, agent):
N = self.skills[agent].likelihood*self.skills[agent].backward
return N.forget(self.agents[agent].player.gamma, self.skills[agent].elapsed)
def new_backward_info(self):
for a in self.skills:
self.skills[a].backward = self.agents[a].message
return self.iteration()
def new_forward_info(self):
for a in self.skills:
self.skills[a].forward = self.agents[a].receive(self.skills[a].elapsed)
return self.iteration()
*/
pub fn backward_prior_out(&self, agent: &str, agents: &mut HashMap<String, Agent>) -> Gaussian {
let skill = &self.skills[agent];
let n = skill.likelihood * skill.backward;
n.forget(agents[agent].player.gamma, skill.elapsed)
}
pub fn new_backward_info(&mut self, agents: &mut HashMap<String, Agent>) {
for (agent, skill) in self.skills.iter_mut() {
skill.backward = agents[agent].message;
}
self.iteration(0, agents);
}
pub fn new_forward_info(&mut self, agents: &mut HashMap<String, Agent>) {
for (agent, skill) in self.skills.iter_mut() {
skill.forward = agents[agent].receive(skill.elapsed);
}
self.iteration(0, agents);
}
}
#[cfg(test)]
@@ -324,7 +329,7 @@ mod tests {
],
vec![vec![1, 0], vec![0, 1], vec![1, 0]],
0.0,
agents,
&mut agents,
0.0,
);
@@ -339,7 +344,7 @@ mod tests {
assert_eq!(post["c"].mu(), 20.79477925612302);
assert_eq!(post["c"].sigma(), 7.194481422570443);
assert_eq!(b.convergence(), 1);
assert_eq!(b.convergence(&mut agents), 1);
}
#[test]
@@ -369,7 +374,7 @@ mod tests {
],
vec![vec![1, 0], vec![0, 1], vec![1, 0]],
2.0,
agents,
&mut agents,
0.0,
);
@@ -384,7 +389,7 @@ mod tests {
assert_eq!(post["c"].mu(), 24.88968178743119);
assert_eq!(post["c"].sigma(), 5.866311348102562);
assert!(b.convergence() > 1);
assert!(b.convergence(&mut agents) > 1);
let post = b.posteriors();

View File

@@ -1,4 +1,3 @@
use std::cmp::Reverse;
use std::collections::HashSet;
use crate::{message::DiffMessages, utils, variable::TeamVariable, Gaussian, Player, N00};
@@ -73,7 +72,7 @@ impl Game {
}
let r = &self.result;
let o = utils::sortperm(r);
let o = utils::sortperm(r, true);
let t = (0..self.teams.len())
.map(|e| TeamVariable {

View File

@@ -51,8 +51,6 @@ impl History {
})
.collect::<HashMap<_, _>>();
println!("{:#?}", agents);
let mut this = Self {
size: composition.len(),
batches: Vec::new(),
@@ -75,13 +73,7 @@ impl History {
results: Vec<Vec<u16>>,
times: Vec<u64>,
) {
let o = {
let mut o = utils::sortperm(&times);
o.reverse();
o
};
let o = o;
let o = utils::sortperm(&times, false);
let mut i = 0;
while i < self.size {
@@ -102,7 +94,7 @@ impl History {
composition,
results,
t as f64,
self.agents.clone(),
&mut self.agents,
self.p_draw,
);
@@ -119,16 +111,89 @@ impl History {
}
}
fn iteration(&self) {
todo!()
fn iteration(&mut self) -> (f64, f64) {
let mut step = (0.0, 0.0);
clean(self.agents.values_mut(), false);
for j in (0..self.batches.len() - 1).rev() {
for agent in self.batches[j + 1].skills.keys() {
self.agents.get_mut(agent).unwrap().message =
self.batches[j + 1].backward_prior_out(agent, &mut self.agents);
}
fn convergence(&self) {
let old = self.batches[j].posteriors();
self.batches[j].new_backward_info(&mut self.agents);
let new = self.batches[j].posteriors();
step = old
.iter()
.fold(step, |step, (a, old)| tuple_max(step, old.delta(new[a])));
}
clean(self.agents.values_mut(), false);
for j in 1..self.batches.len() {
for agent in self.batches[j - 1].skills.keys() {
self.agents.get_mut(agent).unwrap().message =
self.batches[j - 1].forward_prior_out(agent);
}
let old = self.batches[j].posteriors();
self.batches[j].new_forward_info(&mut self.agents);
let new = self.batches[j].posteriors();
step = old
.iter()
.fold(step, |step, (a, old)| tuple_max(step, old.delta(new[a])));
}
if self.batches.len() == 1 {
let old = self.batches[0].posteriors();
self.batches[0].convergence(&mut self.agents);
let new = self.batches[0].posteriors();
step = old
.iter()
.fold(step, |step, (a, old)| tuple_max(step, old.delta(new[a])));
}
step
}
pub fn convergence(&mut self) -> ((f64, f64), usize) {
let epsilon = 1e-6;
let iterations = 30;
let verbose = true;
let verbose = false;
todo!()
let mut step = (f64::INFINITY, f64::INFINITY);
let mut i = 0;
while (step.0 > epsilon || step.1 > epsilon) && i < iterations {
if verbose {
print!("Iteration = {}", i);
}
step = self.iteration();
i += 1;
if verbose {
println!(", step = {:?}", step);
}
}
if verbose {
println!("End");
}
(step, i)
}
fn learning_curves(&self) {
@@ -140,6 +205,23 @@ impl History {
}
}
fn clean<'a, A: Iterator<Item = &'a mut Agent>>(agents: A, last_time: bool) {
for a in agents {
a.message = N_INF;
if last_time {
a.last_time = f64::NEG_INFINITY;
}
}
}
fn tuple_max(a: (f64, f64), b: (f64, f64)) -> (f64, f64) {
(
if a.0 > b.0 { a.0 } else { b.0 },
if a.1 > b.1 { a.1 } else { b.1 },
)
}
#[cfg(test)]
mod tests {
use approx::assert_ulps_eq;
@@ -170,7 +252,7 @@ mod tests {
priors.insert(k.to_string(), player);
}
let h = History::new(
let mut h = History::new(
composition,
results,
vec![1, 2, 3],
@@ -194,10 +276,172 @@ mod tests {
assert_ulps_eq!(observed, expected, epsilon = 0.000001);
let observed = h.batches[1].posterior("a");
let p = Game::new(h.batches[1].within_priors(0), vec![0, 1], P_DRAW).posteriors();
let p = Game::new(
h.batches[1].within_priors(0, &mut h.agents),
vec![0, 1],
P_DRAW,
)
.posteriors();
let expected = p[0][0];
assert_ulps_eq!(observed.mu(), expected.mu(), epsilon = 0.000001);
assert_ulps_eq!(observed.sigma(), expected.sigma(), epsilon = 0.000001);
}
#[test]
fn test_one_batch() {
let composition = vec![
vec![vec!["aj"], vec!["bj"]],
vec![vec!["bj"], vec!["cj"]],
vec![vec!["cj"], vec!["aj"]],
];
let results = vec![vec![1, 0], vec![1, 0], vec![1, 0]];
let times = vec![1, 1, 1];
let mut priors = HashMap::new();
for k in ["aj", "bj", "cj"] {
let player = Player::new(
Gaussian::new(25.0, 25.0 / 3.0),
25.0 / 6.0,
0.15 * 25.0 / 3.0,
N_INF,
);
priors.insert(k.to_string(), player);
}
let mut h1 = History::new(
composition,
results,
times,
priors,
MU,
BETA,
SIGMA,
GAMMA,
P_DRAW,
);
assert_ulps_eq!(
h1.batches[0].posterior("aj").mu(),
22.904409330892914,
epsilon = 0.000001
);
assert_ulps_eq!(
h1.batches[0].posterior("aj").sigma(),
6.0103304390431,
epsilon = 0.000001
);
assert_ulps_eq!(
h1.batches[0].posterior("cj").mu(),
25.110318212568806,
epsilon = 0.000001
);
assert_ulps_eq!(
h1.batches[0].posterior("cj").sigma(),
5.866311348102563,
epsilon = 0.000001
);
let (_step, _i) = h1.convergence();
assert_ulps_eq!(
h1.batches[0].posterior("aj").mu(),
25.00000000,
epsilon = 0.000001
);
assert_ulps_eq!(
h1.batches[0].posterior("aj").sigma(),
5.41921200,
epsilon = 0.000001
);
assert_ulps_eq!(
h1.batches[0].posterior("cj").mu(),
25.00000000,
epsilon = 0.000001
);
assert_ulps_eq!(
h1.batches[0].posterior("cj").sigma(),
5.41921200,
epsilon = 0.000001
);
let composition = vec![
vec![vec!["aj"], vec!["bj"]],
vec![vec!["bj"], vec!["cj"]],
vec![vec!["cj"], vec!["aj"]],
];
let results = vec![vec![1, 0], vec![1, 0], vec![1, 0]];
let times = vec![1, 2, 3];
let mut priors = HashMap::new();
for k in ["aj", "bj", "cj"] {
let player = Player::new(
Gaussian::new(25.0, 25.0 / 3.0),
25.0 / 6.0,
25.0 / 300.0,
N_INF,
);
priors.insert(k.to_string(), player);
}
let mut h2 = History::new(
composition,
results,
times,
priors,
MU,
BETA,
SIGMA,
GAMMA,
P_DRAW,
);
assert_ulps_eq!(
h2.batches[2].posterior("aj").mu(),
22.90352227792141,
epsilon = 0.000001
);
assert_ulps_eq!(
h2.batches[2].posterior("aj").sigma(),
6.011017301320632,
epsilon = 0.000001
);
assert_ulps_eq!(
h2.batches[2].posterior("cj").mu(),
25.110702468366718,
epsilon = 0.000001
);
assert_ulps_eq!(
h2.batches[2].posterior("cj").sigma(),
5.866811597660157,
epsilon = 0.000001
);
let (_step, _i) = h2.convergence();
assert_ulps_eq!(
h2.batches[2].posterior("aj").mu(),
24.99999999,
epsilon = 0.000001
);
assert_ulps_eq!(
h2.batches[2].posterior("aj").sigma(),
5.419212002,
epsilon = 0.000001
);
assert_ulps_eq!(
h2.batches[2].posterior("cj").mu(),
24.99999999,
epsilon = 0.000001
);
assert_ulps_eq!(
h2.batches[2].posterior("cj").sigma(),
5.419212002,
epsilon = 0.000001
);
}
}

View File

@@ -3,37 +3,38 @@ use std::collections::HashMap;
use trueskill_tt::*;
fn main() {
let mut agents = HashMap::new();
let composition = vec![
vec![vec!["aj"], vec!["bj"]],
vec![vec!["bj"], vec!["cj"]],
vec![vec!["cj"], vec!["aj"]],
];
let results = vec![vec![1, 0], vec![1, 0], vec![1, 0]];
let times = vec![1, 2, 3];
for k in ["a", "b", "c", "d", "e", "f"] {
let agent = Agent::new(
Player::new(
let mut priors = HashMap::new();
for k in ["aj", "bj", "cj"] {
let player = Player::new(
Gaussian::new(25.0, 25.0 / 3.0),
25.0 / 6.0,
25.0 / 300.0,
N_INF,
),
N_INF,
f64::NEG_INFINITY,
);
agents.insert(k.to_string(), agent);
priors.insert(k.to_string(), player);
}
let b = Batch::new(
vec![
vec![vec!["a"], vec!["b"]],
vec![vec!["c"], vec!["d"]],
vec![vec!["e"], vec!["f"]],
],
vec![vec![1, 0], vec![0, 1], vec![1, 0]],
0.0,
agents,
0.0,
let mut h2 = History::new(
composition,
results,
times,
priors,
MU,
BETA,
SIGMA,
GAMMA,
P_DRAW,
);
let post = b.posteriors();
println!("{} {}", post["a"].mu(), 29.205);
println!("{} {}", post["a"].sigma(), 7.194)
let (step, i) = h2.convergence();
}

View File

@@ -134,9 +134,15 @@ pub(crate) fn compute_margin(p_draw: f64, sd: f64) -> f64 {
ppf(0.5 - p_draw / 2.0, 0.0, sd).abs()
}
pub(crate) fn sortperm<T: Ord>(xs: &[T]) -> Vec<usize> {
pub(crate) fn sortperm<T: Ord>(xs: &[T], reverse: bool) -> Vec<usize> {
let mut x = xs.iter().enumerate().collect::<Vec<_>>();
if reverse {
x.sort_unstable_by_key(|(_, x)| Reverse(*x));
} else {
x.sort_unstable_by_key(|(_, x)| *x);
}
x.into_iter().map(|(i, _)| i).collect()
}
@@ -216,6 +222,7 @@ mod tests {
#[test]
fn test_sortperm() {
assert_eq!(sortperm(&[0, 1, 2, 0]), vec![2, 1, 0, 3]);
assert_eq!(sortperm(&[0, 1, 2, 0], true), vec![2, 1, 0, 3]);
assert_eq!(sortperm(&[1, 1, 1], false), vec![0, 1, 2]);
}
}