More test passing for History
This commit is contained in:
97
src/batch.rs
97
src/batch.rs
@@ -2,7 +2,7 @@ use std::collections::{HashMap, HashSet};
|
||||
|
||||
use crate::{Game, Gaussian, Player, N_INF};
|
||||
|
||||
#[derive(Clone)]
|
||||
#[derive(Clone, Debug)]
|
||||
pub struct Skill {
|
||||
pub forward: Gaussian,
|
||||
pub backward: Gaussian,
|
||||
@@ -96,7 +96,6 @@ pub struct Batch {
|
||||
pub skills: HashMap<String, Skill>,
|
||||
events: Vec<Event>,
|
||||
time: f64,
|
||||
agents: HashMap<String, Agent>,
|
||||
p_draw: f64,
|
||||
}
|
||||
|
||||
@@ -105,23 +104,27 @@ impl Batch {
|
||||
composition: Vec<Vec<Vec<&str>>>,
|
||||
results: Vec<Vec<u16>>,
|
||||
time: f64,
|
||||
agents: HashMap<String, Agent>,
|
||||
agents: &mut HashMap<String, Agent>,
|
||||
p_draw: f64,
|
||||
) -> Self {
|
||||
let mut this = Self {
|
||||
skills: HashMap::new(),
|
||||
events: Vec::new(),
|
||||
time,
|
||||
agents,
|
||||
p_draw,
|
||||
};
|
||||
|
||||
this.add_events(composition, results);
|
||||
this.add_events(composition, results, agents);
|
||||
|
||||
this
|
||||
}
|
||||
|
||||
pub fn add_events(&mut self, composition: Vec<Vec<Vec<&str>>>, results: Vec<Vec<u16>>) {
|
||||
pub fn add_events(
|
||||
&mut self,
|
||||
composition: Vec<Vec<Vec<&str>>>,
|
||||
results: Vec<Vec<u16>>,
|
||||
agents: &mut HashMap<String, Agent>,
|
||||
) {
|
||||
let this_agent = composition
|
||||
.iter()
|
||||
.flat_map(|teams| teams.iter())
|
||||
@@ -130,16 +133,16 @@ impl Batch {
|
||||
.collect::<HashSet<_>>();
|
||||
|
||||
for a in this_agent {
|
||||
let elapsed = compute_elapsed(self.agents[a].last_time, self.time);
|
||||
let elapsed = compute_elapsed(agents[a].last_time, self.time);
|
||||
|
||||
if let Some(skill) = self.skills.get_mut(a) {
|
||||
skill.elapsed = elapsed;
|
||||
skill.forward = self.agents[a].receive(elapsed);
|
||||
skill.forward = agents[a].receive(elapsed);
|
||||
} else {
|
||||
self.skills.insert(
|
||||
a.to_string(),
|
||||
Skill {
|
||||
forward: self.agents[a].receive(elapsed),
|
||||
forward: agents[a].receive(elapsed),
|
||||
..Default::default()
|
||||
},
|
||||
);
|
||||
@@ -173,7 +176,7 @@ impl Batch {
|
||||
self.events.push(event);
|
||||
}
|
||||
|
||||
self.iteration(from);
|
||||
self.iteration(from, agents);
|
||||
}
|
||||
|
||||
pub fn posterior(&self, agent: &str) -> Gaussian {
|
||||
@@ -189,29 +192,33 @@ impl Batch {
|
||||
.collect::<HashMap<_, _>>()
|
||||
}
|
||||
|
||||
fn within_prior(&self, item: &Item) -> Player {
|
||||
let r = &self.agents[&item.name].player;
|
||||
fn within_prior(&self, item: &Item, agents: &mut HashMap<String, Agent>) -> Player {
|
||||
let r = &agents[&item.name].player;
|
||||
let g = self.posterior(&item.name) / item.likelihood;
|
||||
|
||||
Player::new(g, r.beta, r.gamma, N_INF)
|
||||
}
|
||||
|
||||
pub fn within_priors(&self, event: usize) -> Vec<Vec<Player>> {
|
||||
pub fn within_priors(
|
||||
&self,
|
||||
event: usize,
|
||||
agents: &mut HashMap<String, Agent>,
|
||||
) -> Vec<Vec<Player>> {
|
||||
self.events[event]
|
||||
.teams
|
||||
.iter()
|
||||
.map(|team| {
|
||||
team.items
|
||||
.iter()
|
||||
.map(|item| self.within_prior(item))
|
||||
.map(|item| self.within_prior(item, agents))
|
||||
.collect::<Vec<_>>()
|
||||
})
|
||||
.collect::<Vec<_>>()
|
||||
}
|
||||
|
||||
fn iteration(&mut self, from: usize) {
|
||||
fn iteration(&mut self, from: usize, agents: &mut HashMap<String, Agent>) {
|
||||
for e in from..self.events.len() {
|
||||
let teams = self.within_priors(e);
|
||||
let teams = self.within_priors(e, agents);
|
||||
let result = self.events[e].result();
|
||||
|
||||
let g = Game::new(teams, result, self.p_draw);
|
||||
@@ -230,7 +237,7 @@ impl Batch {
|
||||
}
|
||||
}
|
||||
|
||||
pub fn convergence(&mut self) -> usize {
|
||||
pub fn convergence(&mut self, agents: &mut HashMap<String, Agent>) -> usize {
|
||||
let epsilon = 1e-6;
|
||||
let iterations = 20;
|
||||
|
||||
@@ -240,7 +247,7 @@ impl Batch {
|
||||
while (step.0 > epsilon || step.1 > epsilon) && i < iterations {
|
||||
let old = self.posteriors();
|
||||
|
||||
self.iteration(0);
|
||||
self.iteration(0, agents);
|
||||
|
||||
let new = self.posteriors();
|
||||
|
||||
@@ -259,36 +266,34 @@ impl Batch {
|
||||
i
|
||||
}
|
||||
|
||||
/*
|
||||
def convergence(self, epsilon=1e-6, iterations = 20):
|
||||
step, i = (inf, inf), 0
|
||||
while gr_tuple(step, epsilon) and (i < iterations):
|
||||
old = self.posteriors().copy()
|
||||
self.iteration()
|
||||
step = dict_diff(old, self.posteriors())
|
||||
i += 1
|
||||
return i
|
||||
*/
|
||||
|
||||
pub fn forward_prior_out(&self, agent: &str) -> Gaussian {
|
||||
let skill = &self.skills[agent];
|
||||
|
||||
skill.forward * skill.likelihood
|
||||
}
|
||||
|
||||
/*
|
||||
def backward_prior_out(self, agent):
|
||||
N = self.skills[agent].likelihood*self.skills[agent].backward
|
||||
return N.forget(self.agents[agent].player.gamma, self.skills[agent].elapsed)
|
||||
def new_backward_info(self):
|
||||
for a in self.skills:
|
||||
self.skills[a].backward = self.agents[a].message
|
||||
return self.iteration()
|
||||
def new_forward_info(self):
|
||||
for a in self.skills:
|
||||
self.skills[a].forward = self.agents[a].receive(self.skills[a].elapsed)
|
||||
return self.iteration()
|
||||
*/
|
||||
pub fn backward_prior_out(&self, agent: &str, agents: &mut HashMap<String, Agent>) -> Gaussian {
|
||||
let skill = &self.skills[agent];
|
||||
let n = skill.likelihood * skill.backward;
|
||||
|
||||
n.forget(agents[agent].player.gamma, skill.elapsed)
|
||||
}
|
||||
|
||||
pub fn new_backward_info(&mut self, agents: &mut HashMap<String, Agent>) {
|
||||
for (agent, skill) in self.skills.iter_mut() {
|
||||
skill.backward = agents[agent].message;
|
||||
}
|
||||
|
||||
self.iteration(0, agents);
|
||||
}
|
||||
|
||||
pub fn new_forward_info(&mut self, agents: &mut HashMap<String, Agent>) {
|
||||
for (agent, skill) in self.skills.iter_mut() {
|
||||
skill.forward = agents[agent].receive(skill.elapsed);
|
||||
}
|
||||
|
||||
self.iteration(0, agents);
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
@@ -324,7 +329,7 @@ mod tests {
|
||||
],
|
||||
vec![vec![1, 0], vec![0, 1], vec![1, 0]],
|
||||
0.0,
|
||||
agents,
|
||||
&mut agents,
|
||||
0.0,
|
||||
);
|
||||
|
||||
@@ -339,7 +344,7 @@ mod tests {
|
||||
assert_eq!(post["c"].mu(), 20.79477925612302);
|
||||
assert_eq!(post["c"].sigma(), 7.194481422570443);
|
||||
|
||||
assert_eq!(b.convergence(), 1);
|
||||
assert_eq!(b.convergence(&mut agents), 1);
|
||||
}
|
||||
|
||||
#[test]
|
||||
@@ -369,7 +374,7 @@ mod tests {
|
||||
],
|
||||
vec![vec![1, 0], vec![0, 1], vec![1, 0]],
|
||||
2.0,
|
||||
agents,
|
||||
&mut agents,
|
||||
0.0,
|
||||
);
|
||||
|
||||
@@ -384,7 +389,7 @@ mod tests {
|
||||
assert_eq!(post["c"].mu(), 24.88968178743119);
|
||||
assert_eq!(post["c"].sigma(), 5.866311348102562);
|
||||
|
||||
assert!(b.convergence() > 1);
|
||||
assert!(b.convergence(&mut agents) > 1);
|
||||
|
||||
let post = b.posteriors();
|
||||
|
||||
|
||||
Reference in New Issue
Block a user