Working on History struct. First test is passing.
This commit is contained in:
23
src/batch.rs
23
src/batch.rs
@@ -2,6 +2,7 @@ use std::collections::{HashMap, HashSet};
|
|||||||
|
|
||||||
use crate::{Game, Gaussian, Player, N_INF};
|
use crate::{Game, Gaussian, Player, N_INF};
|
||||||
|
|
||||||
|
#[derive(Clone)]
|
||||||
pub struct Skill {
|
pub struct Skill {
|
||||||
pub forward: Gaussian,
|
pub forward: Gaussian,
|
||||||
pub backward: Gaussian,
|
pub backward: Gaussian,
|
||||||
@@ -20,6 +21,7 @@ impl Default for Skill {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
#[derive(Clone, Copy, Debug)]
|
||||||
pub struct Agent {
|
pub struct Agent {
|
||||||
pub player: Player,
|
pub player: Player,
|
||||||
pub message: Gaussian,
|
pub message: Gaussian,
|
||||||
@@ -44,16 +46,19 @@ impl Agent {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
#[derive(Clone)]
|
||||||
pub struct Item {
|
pub struct Item {
|
||||||
name: String,
|
name: String,
|
||||||
likelihood: Gaussian,
|
likelihood: Gaussian,
|
||||||
}
|
}
|
||||||
|
|
||||||
|
#[derive(Clone)]
|
||||||
pub struct Team {
|
pub struct Team {
|
||||||
items: Vec<Item>,
|
items: Vec<Item>,
|
||||||
output: u16,
|
output: u16,
|
||||||
}
|
}
|
||||||
|
|
||||||
|
#[derive(Clone)]
|
||||||
pub struct Event {
|
pub struct Event {
|
||||||
teams: Vec<Team>,
|
teams: Vec<Team>,
|
||||||
evidence: f64,
|
evidence: f64,
|
||||||
@@ -86,8 +91,9 @@ fn compute_elapsed(last_time: f64, actual_time: f64) -> f64 {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
#[derive(Clone)]
|
||||||
pub struct Batch {
|
pub struct Batch {
|
||||||
skills: HashMap<String, Skill>,
|
pub skills: HashMap<String, Skill>,
|
||||||
events: Vec<Event>,
|
events: Vec<Event>,
|
||||||
time: f64,
|
time: f64,
|
||||||
agents: HashMap<String, Agent>,
|
agents: HashMap<String, Agent>,
|
||||||
@@ -170,7 +176,7 @@ impl Batch {
|
|||||||
self.iteration(from);
|
self.iteration(from);
|
||||||
}
|
}
|
||||||
|
|
||||||
fn posterior(&self, agent: &str) -> Gaussian {
|
pub fn posterior(&self, agent: &str) -> Gaussian {
|
||||||
let skill = &self.skills[agent];
|
let skill = &self.skills[agent];
|
||||||
|
|
||||||
skill.likelihood * skill.backward * skill.forward
|
skill.likelihood * skill.backward * skill.forward
|
||||||
@@ -190,7 +196,7 @@ impl Batch {
|
|||||||
Player::new(g, r.beta, r.gamma, N_INF)
|
Player::new(g, r.beta, r.gamma, N_INF)
|
||||||
}
|
}
|
||||||
|
|
||||||
fn within_priors(&self, event: usize) -> Vec<Vec<Player>> {
|
pub fn within_priors(&self, event: usize) -> Vec<Vec<Player>> {
|
||||||
self.events[event]
|
self.events[event]
|
||||||
.teams
|
.teams
|
||||||
.iter()
|
.iter()
|
||||||
@@ -262,8 +268,15 @@ impl Batch {
|
|||||||
step = dict_diff(old, self.posteriors())
|
step = dict_diff(old, self.posteriors())
|
||||||
i += 1
|
i += 1
|
||||||
return i
|
return i
|
||||||
def forward_prior_out(self, agent):
|
*/
|
||||||
return self.skills[agent].forward * self.skills[agent].likelihood
|
|
||||||
|
pub fn forward_prior_out(&self, agent: &str) -> Gaussian {
|
||||||
|
let skill = &self.skills[agent];
|
||||||
|
|
||||||
|
skill.forward * skill.likelihood
|
||||||
|
}
|
||||||
|
|
||||||
|
/*
|
||||||
def backward_prior_out(self, agent):
|
def backward_prior_out(self, agent):
|
||||||
N = self.skills[agent].likelihood*self.skills[agent].backward
|
N = self.skills[agent].likelihood*self.skills[agent].backward
|
||||||
return N.forget(self.agents[agent].player.gamma, self.skills[agent].elapsed)
|
return N.forget(self.agents[agent].player.gamma, self.skills[agent].elapsed)
|
||||||
|
|||||||
13
src/game.rs
13
src/game.rs
@@ -73,7 +73,7 @@ impl Game {
|
|||||||
}
|
}
|
||||||
|
|
||||||
let r = &self.result;
|
let r = &self.result;
|
||||||
let o = sortperm(r);
|
let o = utils::sortperm(r);
|
||||||
|
|
||||||
let t = (0..self.teams.len())
|
let t = (0..self.teams.len())
|
||||||
.map(|e| TeamVariable {
|
.map(|e| TeamVariable {
|
||||||
@@ -272,23 +272,12 @@ impl Game {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
fn sortperm(xs: &[u16]) -> Vec<usize> {
|
|
||||||
let mut x = xs.iter().enumerate().collect::<Vec<_>>();
|
|
||||||
x.sort_unstable_by_key(|(_, x)| Reverse(*x));
|
|
||||||
x.into_iter().map(|(i, _)| i).collect()
|
|
||||||
}
|
|
||||||
|
|
||||||
#[cfg(test)]
|
#[cfg(test)]
|
||||||
mod tests {
|
mod tests {
|
||||||
use crate::{Gaussian, Player, GAMMA, N_INF};
|
use crate::{Gaussian, Player, GAMMA, N_INF};
|
||||||
|
|
||||||
use super::*;
|
use super::*;
|
||||||
|
|
||||||
#[test]
|
|
||||||
fn test_sortperm() {
|
|
||||||
assert_eq!(sortperm(&[0, 1, 2, 0]), vec![2, 1, 0, 3]);
|
|
||||||
}
|
|
||||||
|
|
||||||
#[test]
|
#[test]
|
||||||
fn test_1vs1() {
|
fn test_1vs1() {
|
||||||
let t_a = Player::new(
|
let t_a = Player::new(
|
||||||
|
|||||||
198
src/history.rs
198
src/history.rs
@@ -1,5 +1,203 @@
|
|||||||
|
use std::collections::{HashMap, HashSet};
|
||||||
|
|
||||||
|
use crate::{utils, Agent, Batch, Gaussian, Player, N_INF};
|
||||||
|
|
||||||
pub struct History {
|
pub struct History {
|
||||||
|
size: usize,
|
||||||
|
batches: Vec<Batch>,
|
||||||
|
agents: HashMap<String, Agent>,
|
||||||
mu: f64,
|
mu: f64,
|
||||||
sigma: f64,
|
sigma: f64,
|
||||||
gamma: f64,
|
gamma: f64,
|
||||||
|
p_draw: f64,
|
||||||
|
time: bool,
|
||||||
|
}
|
||||||
|
|
||||||
|
impl History {
|
||||||
|
pub fn new(
|
||||||
|
composition: Vec<Vec<Vec<&str>>>,
|
||||||
|
results: Vec<Vec<u16>>,
|
||||||
|
times: Vec<u64>,
|
||||||
|
priors: HashMap<String, Player>,
|
||||||
|
mu: f64,
|
||||||
|
beta: f64,
|
||||||
|
sigma: f64,
|
||||||
|
gamma: f64,
|
||||||
|
p_draw: f64,
|
||||||
|
) -> Self {
|
||||||
|
let this_agent = composition
|
||||||
|
.iter()
|
||||||
|
.flat_map(|teams| teams.iter())
|
||||||
|
.flat_map(|team| team.iter())
|
||||||
|
.cloned()
|
||||||
|
.collect::<HashSet<_>>();
|
||||||
|
|
||||||
|
let agents = this_agent
|
||||||
|
.into_iter()
|
||||||
|
.map(|a| {
|
||||||
|
let player = priors
|
||||||
|
.get(a)
|
||||||
|
.cloned()
|
||||||
|
.unwrap_or_else(|| Player::new(Gaussian::new(mu, sigma), beta, gamma, N_INF));
|
||||||
|
|
||||||
|
(
|
||||||
|
a.to_string(),
|
||||||
|
Agent {
|
||||||
|
player,
|
||||||
|
message: N_INF,
|
||||||
|
last_time: f64::NEG_INFINITY,
|
||||||
|
},
|
||||||
|
)
|
||||||
|
})
|
||||||
|
.collect::<HashMap<_, _>>();
|
||||||
|
|
||||||
|
println!("{:#?}", agents);
|
||||||
|
|
||||||
|
let mut this = Self {
|
||||||
|
size: composition.len(),
|
||||||
|
batches: Vec::new(),
|
||||||
|
agents,
|
||||||
|
mu,
|
||||||
|
sigma,
|
||||||
|
gamma,
|
||||||
|
p_draw,
|
||||||
|
time: !times.is_empty(),
|
||||||
|
};
|
||||||
|
|
||||||
|
this.trueskill(composition, results, times);
|
||||||
|
|
||||||
|
this
|
||||||
|
}
|
||||||
|
|
||||||
|
fn trueskill(
|
||||||
|
&mut self,
|
||||||
|
composition: Vec<Vec<Vec<&str>>>,
|
||||||
|
results: Vec<Vec<u16>>,
|
||||||
|
times: Vec<u64>,
|
||||||
|
) {
|
||||||
|
let o = {
|
||||||
|
let mut o = utils::sortperm(×);
|
||||||
|
o.reverse();
|
||||||
|
o
|
||||||
|
};
|
||||||
|
|
||||||
|
let o = o;
|
||||||
|
let mut i = 0;
|
||||||
|
|
||||||
|
while i < self.size {
|
||||||
|
let mut j = i + 1;
|
||||||
|
let t = times[o[i]];
|
||||||
|
|
||||||
|
while j < self.size && times[o[j]] == t {
|
||||||
|
j += 1;
|
||||||
|
}
|
||||||
|
|
||||||
|
let composition = (i..j)
|
||||||
|
.map(|e| composition[o[e]].clone())
|
||||||
|
.collect::<Vec<_>>();
|
||||||
|
|
||||||
|
let results = (i..j).map(|e| results[o[e]].clone()).collect::<Vec<_>>();
|
||||||
|
|
||||||
|
let b = Batch::new(
|
||||||
|
composition,
|
||||||
|
results,
|
||||||
|
t as f64,
|
||||||
|
self.agents.clone(),
|
||||||
|
self.p_draw,
|
||||||
|
);
|
||||||
|
|
||||||
|
self.batches.push(b.clone());
|
||||||
|
|
||||||
|
for a in b.skills.keys() {
|
||||||
|
let agent = self.agents.get_mut(a).unwrap();
|
||||||
|
|
||||||
|
agent.last_time = t as f64;
|
||||||
|
agent.message = b.forward_prior_out(a);
|
||||||
|
}
|
||||||
|
|
||||||
|
i = j;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
fn iteration(&self) {
|
||||||
|
todo!()
|
||||||
|
}
|
||||||
|
|
||||||
|
fn convergence(&self) {
|
||||||
|
let epsilon = 1e-6;
|
||||||
|
let iterations = 30;
|
||||||
|
let verbose = true;
|
||||||
|
|
||||||
|
todo!()
|
||||||
|
}
|
||||||
|
|
||||||
|
fn learning_curves(&self) {
|
||||||
|
todo!()
|
||||||
|
}
|
||||||
|
|
||||||
|
fn log_evidence(&self) {
|
||||||
|
todo!()
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
#[cfg(test)]
|
||||||
|
mod tests {
|
||||||
|
use approx::assert_ulps_eq;
|
||||||
|
|
||||||
|
use crate::{Game, BETA, GAMMA, MU, P_DRAW, SIGMA};
|
||||||
|
|
||||||
|
use super::*;
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn test_init() {
|
||||||
|
let composition = vec![
|
||||||
|
vec![vec!["a"], vec!["b"]],
|
||||||
|
vec![vec!["a"], vec!["c"]],
|
||||||
|
vec![vec!["b"], vec!["c"]],
|
||||||
|
];
|
||||||
|
let results = vec![vec![1, 0], vec![0, 1], vec![1, 0]];
|
||||||
|
|
||||||
|
let mut priors = HashMap::new();
|
||||||
|
|
||||||
|
for k in ["a", "b", "c"] {
|
||||||
|
let player = Player::new(
|
||||||
|
Gaussian::new(25.0, 25.0 / 3.0),
|
||||||
|
25.0 / 6.0,
|
||||||
|
0.15 * 25.0 / 3.0,
|
||||||
|
N_INF,
|
||||||
|
);
|
||||||
|
|
||||||
|
priors.insert(k.to_string(), player);
|
||||||
|
}
|
||||||
|
|
||||||
|
let h = History::new(
|
||||||
|
composition,
|
||||||
|
results,
|
||||||
|
vec![1, 2, 3],
|
||||||
|
priors,
|
||||||
|
MU,
|
||||||
|
BETA,
|
||||||
|
SIGMA,
|
||||||
|
GAMMA,
|
||||||
|
P_DRAW,
|
||||||
|
);
|
||||||
|
|
||||||
|
let p0 = h.batches[0].posteriors();
|
||||||
|
|
||||||
|
assert_ulps_eq!(p0["a"].mu(), 29.205220743876975, epsilon = 0.000001);
|
||||||
|
assert_ulps_eq!(p0["a"].sigma(), 7.194481422570443, epsilon = 0.000001);
|
||||||
|
|
||||||
|
let observed = h.batches[1].skills["a"].forward.sigma();
|
||||||
|
let gamma: f64 = 0.15 * 25.0 / 3.0;
|
||||||
|
let expected = (gamma.powi(2) + h.batches[0].posterior("a").sigma().powi(2)).sqrt();
|
||||||
|
|
||||||
|
assert_ulps_eq!(observed, expected, epsilon = 0.000001);
|
||||||
|
|
||||||
|
let observed = h.batches[1].posterior("a");
|
||||||
|
let p = Game::new(h.batches[1].within_priors(0), vec![0, 1], P_DRAW).posteriors();
|
||||||
|
let expected = p[0][0];
|
||||||
|
|
||||||
|
assert_ulps_eq!(observed.mu(), expected.mu(), epsilon = 0.000001);
|
||||||
|
assert_ulps_eq!(observed.sigma(), expected.sigma(), epsilon = 0.000001);
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|||||||
11
src/lib.rs
11
src/lib.rs
@@ -12,3 +12,14 @@ pub use game::*;
|
|||||||
pub use gaussian::*;
|
pub use gaussian::*;
|
||||||
pub use history::*;
|
pub use history::*;
|
||||||
pub use player::*;
|
pub use player::*;
|
||||||
|
|
||||||
|
pub const BETA: f64 = 1.0;
|
||||||
|
pub const MU: f64 = 0.0;
|
||||||
|
pub const SIGMA: f64 = BETA * 6.0;
|
||||||
|
pub const GAMMA: f64 = BETA * 0.03;
|
||||||
|
pub const P_DRAW: f64 = 0.0;
|
||||||
|
|
||||||
|
pub const N01: Gaussian = Gaussian::new(0.0, 1.0);
|
||||||
|
pub const N00: Gaussian = Gaussian::new(0.0, 0.0);
|
||||||
|
pub const N_INF: Gaussian = Gaussian::new(0.0, f64::INFINITY);
|
||||||
|
pub const N_MS: Gaussian = Gaussian::new(MU, SIGMA);
|
||||||
|
|||||||
@@ -2,7 +2,7 @@ use std::fmt;
|
|||||||
|
|
||||||
use crate::{Gaussian, BETA, GAMMA, N_INF};
|
use crate::{Gaussian, BETA, GAMMA, N_INF};
|
||||||
|
|
||||||
#[derive(Debug)]
|
#[derive(Clone, Copy, Debug)]
|
||||||
pub struct Player {
|
pub struct Player {
|
||||||
pub prior: Gaussian,
|
pub prior: Gaussian,
|
||||||
pub beta: f64,
|
pub beta: f64,
|
||||||
|
|||||||
12
src/utils.rs
12
src/utils.rs
@@ -1,3 +1,4 @@
|
|||||||
|
use std::cmp::Reverse;
|
||||||
use std::f64::consts::{FRAC_1_SQRT_2, FRAC_2_SQRT_PI, SQRT_2};
|
use std::f64::consts::{FRAC_1_SQRT_2, FRAC_2_SQRT_PI, SQRT_2};
|
||||||
|
|
||||||
use crate::Gaussian;
|
use crate::Gaussian;
|
||||||
@@ -133,6 +134,12 @@ pub(crate) fn compute_margin(p_draw: f64, sd: f64) -> f64 {
|
|||||||
ppf(0.5 - p_draw / 2.0, 0.0, sd).abs()
|
ppf(0.5 - p_draw / 2.0, 0.0, sd).abs()
|
||||||
}
|
}
|
||||||
|
|
||||||
|
pub(crate) fn sortperm<T: Ord>(xs: &[T]) -> Vec<usize> {
|
||||||
|
let mut x = xs.iter().enumerate().collect::<Vec<_>>();
|
||||||
|
x.sort_unstable_by_key(|(_, x)| Reverse(*x));
|
||||||
|
x.into_iter().map(|(i, _)| i).collect()
|
||||||
|
}
|
||||||
|
|
||||||
#[cfg(test)]
|
#[cfg(test)]
|
||||||
mod tests {
|
mod tests {
|
||||||
use crate::{Gaussian, N01};
|
use crate::{Gaussian, N01};
|
||||||
@@ -206,4 +213,9 @@ mod tests {
|
|||||||
(0.39009949143595435, 1.034397855300721)
|
(0.39009949143595435, 1.034397855300721)
|
||||||
);
|
);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn test_sortperm() {
|
||||||
|
assert_eq!(sortperm(&[0, 1, 2, 0]), vec![2, 1, 0, 3]);
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|||||||
Reference in New Issue
Block a user