It works!

This commit is contained in:
2018-10-24 11:12:34 +02:00
parent b39c446b37
commit be74c1eac7
4 changed files with 190 additions and 68 deletions

View File

@@ -23,7 +23,7 @@ impl VariableArena {
let index = self.variables.len();
self.variables.push(Variable {
value: Gaussian::from_precision(0.0, 0.0),
value: Gaussian::from_pi_tau(0.0, 0.0),
factors: HashMap::new(),
});
@@ -46,23 +46,16 @@ pub struct Variable {
impl Variable {
pub fn attach_factor(&mut self, factor: usize) {
self.factors.insert(factor, Gaussian::from_precision(0.0, 0.0));
self.factors.insert(factor, Gaussian::from_pi_tau(0.0, 0.0));
}
pub fn update_value(&mut self, factor: usize, value: Gaussian) {
let old = self.factors[&factor];
let intermediate = value * old;
let new = intermediate / self.value;
self.factors.insert(factor, intermediate / self.value);
/*
println!("update_value: old={}, value={:?}, new={:?}, self.value={:?}",
render_g(old),
value,
new,
self.value);
*/
self.value = new;
self.value = value;
}
pub fn get_value(&self) -> Gaussian {
@@ -77,8 +70,6 @@ impl Variable {
self.value = value;
println!("update_message: old={:?} msg={:?}, new={:?}", old, message, value);
self.factors.insert(factor, message);
}
@@ -110,8 +101,6 @@ impl PriorFactor {
}
pub fn start(&self, variable_arena: &mut VariableArena) {
println!("PriorFactor: variable.id={}, msg={:?}", self.variable.index, self.gaussian);
variable_arena.get_mut(self.variable).unwrap().update_value(self.id, self.gaussian);
}
}
@@ -153,11 +142,9 @@ impl LikelihoodFactor {
.map(|variable| variable.get_message(self.id))
.unwrap();
let a = 1.0 / (1.0 + self.variance * (x.precision_mean() - fx.precision_mean()));
let a = 1.0 / (1.0 + self.variance * (x.pi() - fx.pi()));
let gaussian = Gaussian::from_precision(a * (x.precision_mean() - fx.precision_mean()), a * (x.precision() - fx.precision()));
println!("LikelihoodFactor: mean.id={}, msg={:?}", self.mean.index, gaussian);
let gaussian = Gaussian::from_pi_tau(a * (x.pi() - fx.pi()), a * (x.tau() - fx.tau()));
variable_arena.get_mut(self.mean).unwrap().update_message(self.id, gaussian);
}
@@ -173,12 +160,9 @@ impl LikelihoodFactor {
.map(|variable| variable.get_message(self.id))
.unwrap();
let a = 1.0 / (1.0 + self.variance * (y.precision_mean() - fy.precision_mean()));
let a = 1.0 / (1.0 + self.variance * (y.pi() - fy.pi()));
let gaussian = Gaussian::from_precision(a * (y.precision_mean() - fy.precision_mean()), a * (y.precision() - fy.precision()));
println!("LikelihoodFactor: value.id={}, msg={:?}", self.value.index, gaussian);
let gaussian = Gaussian::from_pi_tau(a * (y.pi() - fy.pi()), a * (y.tau() - fy.tau()));
variable_arena.get_mut(self.value).unwrap().update_message(self.id, gaussian);
}
@@ -240,13 +224,7 @@ impl SumFactor {
let gaussian = Gaussian::from_pi_tau(new_pi, new_tau);
if variable == self.sum {
println!("SumFactor: sum.id={}, msg={:?}", variable.index, gaussian);
} else {
println!("SumFactor: term.id={}, msg={:?}", variable.index, gaussian);
}
variable_arena.get_mut(variable).unwrap().update_value(self.id, gaussian);
variable_arena.get_mut(variable).unwrap().update_message(self.id, gaussian);
}
pub fn update_sum(&self, variable_arena: &mut VariableArena) {
@@ -298,16 +276,16 @@ impl SumFactor {
v[index] = self.sum;
for term in v {
for term in &v {
let value = variable_arena
.get(term)
.get(*term)
.map(|variable| variable.get_value())
.unwrap();
y.push(value);
let value = variable_arena
.get(term)
.get(*term)
.map(|variable| variable.get_message(self.id))
.unwrap();

View File

@@ -7,14 +7,14 @@ mod math;
mod matrix;
use factor_graph::*;
use gaussian::Gaussian;
pub use gaussian::Gaussian;
use matrix::Matrix;
/// Default initial mean of ratings.
const MU: f64 = 25.0;
pub const MU: f64 = 25.0;
/// Default initial standard deviation of ratings.
const SIGMA: f64 = MU / 3.0;
pub const SIGMA: f64 = MU / 3.0;
/// Default distance that guarantees about 76% chance of winning.
const BETA: f64 = SIGMA / 2.0;
@@ -28,6 +28,22 @@ const DRAW_PROBABILITY: f64 = 0.10;
/// A basis to check reliability of the result.
const DELTA: f64 = 0.0001;
fn draw_margin(p: f64, beta: f64, total_players: f64) -> f64 {
math::icdf((p + 1.0) / 2.0) * total_players.sqrt() * beta
}
/*
Constants::Constants() {
double INITIAL_MU = 25.0;
double INITIAL_SIGMA = INITIAL_MU / 3.0;
double TOTAL_PLAYERS = 2.0;
this->BETA = INITIAL_SIGMA / 2.0;
this->EPSILON = draw_margin(0.1, this->BETA, TOTAL_PLAYERS);
this->GAMMA = INITIAL_SIGMA / 100.0;
}
*/
pub fn rate(rating_groups: &[&[Gaussian]]) {
let flatten_ratings = rating_groups
.iter()
@@ -62,7 +78,7 @@ pub fn rate(rating_groups: &[&[Gaussian]]) {
for (i, rating) in flatten_ratings.iter().enumerate() {
let variable = ss[i];
let gaussian = Gaussian::from_mean_variance(rating.mean(), (rating.variance() + tau_sqr).sqrt());
let gaussian = Gaussian::from_mu_sigma(rating.mu(), (rating.sigma().powi(2) + tau_sqr).sqrt());
skill.push(PriorFactor::new(
&mut variable_arena,
@@ -118,12 +134,14 @@ pub fn rate(rating_groups: &[&[Gaussian]]) {
let mut trunc = Vec::new();
let epsilon = draw_margin(0.1, BETA, 2.0);
for i in 0..size - 1 {
trunc.push(TruncateFactor::new(
&mut variable_arena,
factor_id,
ds[i],
DELTA,
epsilon,
false,
));
@@ -134,22 +152,6 @@ pub fn rate(rating_groups: &[&[Gaussian]]) {
factor.start(&mut variable_arena);
}
/*
println!("before:");
for i in 0..size {
let value = variable_arena
.get(ss[i])
.map(|variable| variable.get_value())
.unwrap();
let mu = value.mean();
let sigma = value.std_dev();
println!("* player={}, mu={}, sigma={}", i, mu, sigma);
}
*/
for factor in &skill_to_perf {
factor.update_value(&mut variable_arena);
}
@@ -181,7 +183,6 @@ pub fn rate(rating_groups: &[&[Gaussian]]) {
factor.update_mean(&mut variable_arena);
}
/*
println!("after:");
for i in 0..size {
@@ -190,12 +191,11 @@ pub fn rate(rating_groups: &[&[Gaussian]]) {
.map(|variable| variable.get_value())
.unwrap();
let mu = value.mean();
let sigma = value.std_dev();
let mu = value.mu();
let sigma = value.sigma();
println!("* player={}, mu={}, sigma={}", i, mu, sigma);
}
*/
}
pub fn quality(rating_groups: &[&[Gaussian]]) -> f64 {
@@ -211,13 +211,13 @@ pub fn quality(rating_groups: &[&[Gaussian]]) -> f64 {
let mut mean_matrix = Matrix::new(length, 1);
for (i, rating) in flatten_ratings.iter().enumerate() {
mean_matrix[(i, 0)] = rating.mean();
mean_matrix[(i, 0)] = rating.mu();
}
let mut variance_matrix = Matrix::new(length, length);
for (i, rating) in flatten_ratings.iter().enumerate() {
variance_matrix[(i, i)] = rating.std_dev().powi(2);
variance_matrix[(i, i)] = rating.sigma().powi(2);
}
let mut rotated_a_matrix = Matrix::new(rating_groups.len() - 1, length);
@@ -261,18 +261,18 @@ mod tests {
#[test]
fn test_quality_1vs1() {
let alice = Gaussian::from_mean_std_dev(MU, SIGMA);
let bob = Gaussian::from_mean_std_dev(MU, SIGMA);
let alice = Gaussian::from_mu_sigma(MU, SIGMA);
let bob = Gaussian::from_mu_sigma(MU, SIGMA);
assert_eq!(quality(&[&[alice], &[bob]]), 0.4472135954999579);
}
#[test]
fn test_rate_1vs1() {
let alice = Gaussian::from_mean_std_dev(MU, SIGMA);
let bob = Gaussian::from_mean_std_dev(MU, SIGMA);
let chris = Gaussian::from_mean_std_dev(MU, SIGMA);
let darren = Gaussian::from_mean_std_dev(MU, SIGMA);
let alice = Gaussian::from_mu_sigma(MU, SIGMA);
let bob = Gaussian::from_mu_sigma(MU, SIGMA);
let chris = Gaussian::from_mu_sigma(MU, SIGMA);
let darren = Gaussian::from_mu_sigma(MU, SIGMA);
// println!("alice: {:?}", alice);
// println!("bob: {:?}", alice);

15
src/main.rs Normal file
View File

@@ -0,0 +1,15 @@
extern crate trueskill;
use trueskill::{rate, Gaussian, MU, SIGMA};
fn main() {
let alice = Gaussian::from_mu_sigma(MU, SIGMA);
let bob = Gaussian::from_mu_sigma(MU, SIGMA);
let chris = Gaussian::from_mu_sigma(MU, SIGMA);
let darren = Gaussian::from_mu_sigma(MU, SIGMA);
// println!("alice: {:?}", alice);
// println!("bob: {:?}", alice);
rate(&[&[alice], &[bob], &[chris], &[darren]]);
}

View File

@@ -1,5 +1,130 @@
use statrs::distribution::{Normal, Univariate, Continuous};
const S2PI: f64 = 2.50662827463100050242E0;
const P0: [f64; 5] = [
-5.99633501014107895267E1,
9.80010754185999661536E1,
-5.66762857469070293439E1,
1.39312609387279679503E1,
-1.23916583867381258016E0,
];
const Q0: [f64; 8] = [
1.95448858338141759834E0,
4.67627912898881538453E0,
8.63602421390890590575E1,
-2.25462687854119370527E2,
2.00260212380060660359E2,
-8.20372256168333339912E1,
1.59056225126211695515E1,
-1.18331621121330003142E0,
];
const P1: [f64; 9] = [
4.05544892305962419923E0,
3.15251094599893866154E1,
5.71628192246421288162E1,
4.40805073893200834700E1,
1.46849561928858024014E1,
2.18663306850790267539E0,
-1.40256079171354495875E-1,
-3.50424626827848203418E-2,
-8.57456785154685413611E-4,
];
const Q1: [f64; 8] = [
1.57799883256466749731E1,
4.53907635128879210584E1,
4.13172038254672030440E1,
1.50425385692907503408E1,
2.50464946208309415979E0,
-1.42182922854787788574E-1,
-3.80806407691578277194E-2,
-9.33259480895457427372E-4,
];
const P2: [f64; 9] = [
3.23774891776946035970E0,
6.91522889068984211695E0,
3.93881025292474443415E0,
1.33303460815807542389E0,
2.01485389549179081538E-1,
1.23716634817820021358E-2,
3.01581553508235416007E-4,
2.65806974686737550832E-6,
6.23974539184983293730E-9,
];
const Q2: [f64; 8] = [
6.02427039364742014255E0,
3.67983563856160859403E0,
1.37702099489081330271E0,
2.16236993594496635890E-1,
1.34204006088543189037E-2,
3.28014464682127739104E-4,
2.89247864745380683936E-6,
6.79019408009981274425E-9,
];
fn polevl(x: f64, coef: &[f64], n: usize) -> f64 {
let mut ans = coef[0];
for i in 1..n + 1 {
ans = ans * x + coef[i];
}
ans
}
fn p1evl(x: f64, coef: &[f64], n: usize) -> f64 {
let mut ans = x + coef[0];
for i in 1..n {
ans = ans * x + coef[i];
}
ans
}
fn ndtri(y0: f64) -> f64 {
let mut code = 1;
let mut y = y0;
if y > (1.0 - 0.13533528323661269189) {
y = 1.0 - y;
code = 0;
}
if y > 0.13533528323661269189 {
y = y - 0.5;
let y2 = y * y;
let x = y + y * (y2 * polevl(y2, &P0, 4) / p1evl(y2, &Q0, 8));
let x = x * S2PI;
return x;
}
let x = (-2.0 * y.ln()).sqrt();
let x0 = x - x.ln() / x;
let z = 1.0 / x;
let x1 = if x < 8.0 {
z * polevl(z, &P1, 8) / p1evl(z, &Q1, 8)
} else {
z * polevl(z, &P2, 8) / p1evl(z, &Q2, 8)
};
let mut x = x0 - x1;
if code != 0 {
x = -x;
}
x
}
pub fn cdf(x: f64) -> f64 {
Normal::new(0.0, 1.0).unwrap().cdf(x)
}
@@ -8,6 +133,10 @@ pub fn pdf(x: f64) -> f64 {
Normal::new(0.0, 1.0).unwrap().pdf(x)
}
pub fn icdf(x: f64) -> f64 {
ndtri(x)
}
#[cfg(test)]
mod tests {