It works?!
This commit is contained in:
@@ -1,54 +1,396 @@
|
||||
use std::cmp;
|
||||
use std::collections::HashMap;
|
||||
|
||||
use gaussian::Gaussian;
|
||||
use math;
|
||||
|
||||
#[derive(Clone, Copy)]
|
||||
pub struct VariableId {
|
||||
index: usize,
|
||||
}
|
||||
|
||||
pub struct VariableArena {
|
||||
variables: Vec<Variable>,
|
||||
}
|
||||
|
||||
impl VariableArena {
|
||||
pub fn new() -> VariableArena {
|
||||
VariableArena {
|
||||
variables: Vec::new(),
|
||||
}
|
||||
}
|
||||
|
||||
pub fn create(&mut self) -> VariableId {
|
||||
let index = self.variables.len();
|
||||
|
||||
self.variables.push(Variable {
|
||||
value: Gaussian::with_pi_tau(0.0, 0.0),
|
||||
factors: HashMap::new(),
|
||||
});
|
||||
|
||||
VariableId { index }
|
||||
}
|
||||
|
||||
pub fn get(&mut self, id: VariableId) -> Option<&Variable> {
|
||||
self.variables.get(id.index)
|
||||
}
|
||||
|
||||
pub fn get_mut(&mut self, id: VariableId) -> Option<&mut Variable> {
|
||||
self.variables.get_mut(id.index)
|
||||
}
|
||||
}
|
||||
|
||||
pub struct Variable {
|
||||
gaussian: Gaussian,
|
||||
value: Gaussian,
|
||||
factors: HashMap<usize, Gaussian>,
|
||||
}
|
||||
|
||||
impl Variable {
|
||||
pub fn new() -> Variable {
|
||||
Variable {
|
||||
gaussian: Gaussian::new(0.0, 0.0),
|
||||
}
|
||||
pub fn attach_factor(&mut self, factor: usize) {
|
||||
self.factors.insert(factor, Gaussian::new());
|
||||
}
|
||||
|
||||
fn delta(&self, other: &Variable) -> f32 {
|
||||
let pi_delta = self.gaussian.pi - other.gaussian.pi;
|
||||
pub fn update_value(&mut self, factor: usize, value: Gaussian) {
|
||||
let old = self.factors[&factor];
|
||||
|
||||
if pi_delta.is_infinite() {
|
||||
0.0
|
||||
} else {
|
||||
let tau_delta = (self.gaussian.tau - other.gaussian.tau).abs();
|
||||
let intermediate = value * old;
|
||||
let value = intermediate / self.value;
|
||||
|
||||
if pi_delta > tau_delta {
|
||||
pi_delta
|
||||
} else {
|
||||
tau_delta
|
||||
}
|
||||
}
|
||||
self.value = value;
|
||||
}
|
||||
}
|
||||
|
||||
pub trait Factor {
|
||||
fn down(&self) -> f32 {
|
||||
0.0
|
||||
pub fn get_value(&self) -> Gaussian {
|
||||
self.value
|
||||
}
|
||||
|
||||
pub fn update_message(&mut self, factor: usize, message: Gaussian) {
|
||||
let old = self.factors[&factor];
|
||||
|
||||
let intermediate = self.value / old;
|
||||
let value = intermediate * message;
|
||||
|
||||
self.value = value;
|
||||
|
||||
self.factors.insert(factor, message);
|
||||
}
|
||||
|
||||
pub fn get_message(&self, factor: usize) -> Gaussian {
|
||||
self.factors[&factor]
|
||||
}
|
||||
}
|
||||
|
||||
pub struct PriorFactor {
|
||||
variable: Variable,
|
||||
dynamic: f32
|
||||
id: usize,
|
||||
variable: VariableId,
|
||||
gaussian: Gaussian,
|
||||
}
|
||||
|
||||
impl PriorFactor {
|
||||
pub fn new(variable: Variable, dynamic: f32) -> PriorFactor {
|
||||
PriorFactor { variable, dynamic }
|
||||
pub fn new(
|
||||
variable_arena: &mut VariableArena,
|
||||
id: usize,
|
||||
variable: VariableId,
|
||||
gaussian: Gaussian,
|
||||
) -> PriorFactor {
|
||||
if let Some(variable) = variable_arena.get_mut(variable) {
|
||||
variable.attach_factor(id);
|
||||
}
|
||||
|
||||
PriorFactor {
|
||||
id,
|
||||
variable,
|
||||
gaussian,
|
||||
}
|
||||
}
|
||||
|
||||
pub fn start(&self, variable_arena: &mut VariableArena) {
|
||||
if let Some(variable) = variable_arena.get_mut(self.variable) {
|
||||
variable.update_value(self.id, self.gaussian);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl Factor for PriorFactor {
|
||||
fn down(&self) -> f32 {
|
||||
0.0
|
||||
pub struct LikelihoodFactor {
|
||||
id: usize,
|
||||
mean: VariableId,
|
||||
value: VariableId,
|
||||
variance: f32,
|
||||
}
|
||||
|
||||
impl LikelihoodFactor {
|
||||
pub fn new(
|
||||
variable_arena: &mut VariableArena,
|
||||
id: usize,
|
||||
mean: VariableId,
|
||||
value: VariableId,
|
||||
variance: f32,
|
||||
) -> LikelihoodFactor {
|
||||
if let Some(variable) = variable_arena.get_mut(mean) {
|
||||
variable.attach_factor(id);
|
||||
}
|
||||
|
||||
if let Some(variable) = variable_arena.get_mut(value) {
|
||||
variable.attach_factor(id);
|
||||
}
|
||||
|
||||
LikelihoodFactor {
|
||||
id,
|
||||
mean,
|
||||
value,
|
||||
variance,
|
||||
}
|
||||
}
|
||||
|
||||
pub fn update_mean(&self, variable_arena: &mut VariableArena) {
|
||||
let x = variable_arena
|
||||
.get(self.value)
|
||||
.map(|variable| variable.get_value())
|
||||
.unwrap();
|
||||
let fx = variable_arena
|
||||
.get_mut(self.value)
|
||||
.map(|variable| variable.get_message(self.id))
|
||||
.unwrap();
|
||||
|
||||
let a = 1.0 / (1.0 + self.variance * (x.pi - fx.pi));
|
||||
|
||||
let gaussian = Gaussian::with_pi_tau(a * (x.pi - fx.pi), a * (x.tau - fx.tau));
|
||||
|
||||
if let Some(variable) = variable_arena.get_mut(self.mean) {
|
||||
variable.update_message(self.id, gaussian);
|
||||
}
|
||||
}
|
||||
|
||||
pub fn update_value(&self, variable_arena: &mut VariableArena) {
|
||||
let y = variable_arena
|
||||
.get(self.mean)
|
||||
.map(|variable| variable.get_value())
|
||||
.unwrap();
|
||||
let fy = variable_arena
|
||||
.get(self.mean)
|
||||
.map(|variable| variable.get_message(self.id))
|
||||
.unwrap();
|
||||
|
||||
let a = 1.0 / (1.0 + self.variance * (y.pi - fy.pi));
|
||||
|
||||
let gaussian = Gaussian::with_pi_tau(a * (y.pi - fy.pi), a * (y.tau - fy.tau));
|
||||
|
||||
if let Some(variable) = variable_arena.get_mut(self.value) {
|
||||
variable.update_message(self.id, gaussian);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
pub struct SumFactor {
|
||||
id: usize,
|
||||
sum: VariableId,
|
||||
terms: Vec<VariableId>,
|
||||
coeffs: Vec<f32>,
|
||||
}
|
||||
|
||||
impl SumFactor {
|
||||
pub fn new(
|
||||
variable_arena: &mut VariableArena,
|
||||
id: usize,
|
||||
sum: VariableId,
|
||||
terms: Vec<VariableId>,
|
||||
coeffs: Vec<f32>,
|
||||
) -> SumFactor {
|
||||
if let Some(variable) = variable_arena.get_mut(sum) {
|
||||
variable.attach_factor(id);
|
||||
}
|
||||
|
||||
for term in &terms {
|
||||
if let Some(variable) = variable_arena.get_mut(*term) {
|
||||
variable.attach_factor(id);
|
||||
}
|
||||
}
|
||||
|
||||
SumFactor {
|
||||
id,
|
||||
sum,
|
||||
terms,
|
||||
coeffs,
|
||||
}
|
||||
}
|
||||
|
||||
fn internal_update(
|
||||
&self,
|
||||
variable_arena: &mut VariableArena,
|
||||
variable: VariableId,
|
||||
y: Vec<Gaussian>,
|
||||
fy: Vec<Gaussian>,
|
||||
a: &Vec<f32>,
|
||||
) {
|
||||
let size = a.len();
|
||||
|
||||
let mut sum_pi = 0.0;
|
||||
let mut sum_tau = 0.0;
|
||||
|
||||
for i in 0..size {
|
||||
let da = a[i];
|
||||
let gy = y[i];
|
||||
let gfy = fy[i];
|
||||
|
||||
sum_pi += da.powi(2) / (gy.pi - gfy.pi);
|
||||
sum_tau += da * (gy.tau - gfy.tau) / (gy.pi - gfy.pi);
|
||||
}
|
||||
|
||||
let new_pi = 1.0 / sum_pi;
|
||||
let new_tau = new_pi * sum_tau;
|
||||
|
||||
let gaussian = Gaussian::with_pi_tau(new_pi, new_tau);
|
||||
|
||||
if let Some(variable) = variable_arena.get_mut(variable) {
|
||||
variable.update_value(self.id, gaussian);
|
||||
}
|
||||
}
|
||||
|
||||
pub fn update_sum(&self, variable_arena: &mut VariableArena) {
|
||||
let mut y = Vec::new();
|
||||
|
||||
for term in &self.terms {
|
||||
let value = variable_arena
|
||||
.get(*term)
|
||||
.map(|variable| variable.get_value())
|
||||
.unwrap();
|
||||
|
||||
y.push(value);
|
||||
}
|
||||
|
||||
let mut fy = Vec::new();
|
||||
|
||||
for term in &self.terms {
|
||||
let value = variable_arena
|
||||
.get(*term)
|
||||
.map(|variable| variable.get_message(self.id))
|
||||
.unwrap();
|
||||
|
||||
fy.push(value);
|
||||
}
|
||||
|
||||
self.internal_update(variable_arena, self.sum, y, fy, &self.coeffs);
|
||||
}
|
||||
|
||||
pub fn update_term(&self, variable_arena: &mut VariableArena, index: usize) {
|
||||
let size = self.coeffs.len();
|
||||
let idx_coeff = self.coeffs[index];
|
||||
|
||||
let mut a = vec![0.0; size];
|
||||
|
||||
for i in 0..size {
|
||||
if i != index {
|
||||
a[i] = -self.coeffs[i] / idx_coeff;
|
||||
}
|
||||
}
|
||||
|
||||
a[index] = 1.0 / idx_coeff;
|
||||
|
||||
let idx_term = self.terms[index];
|
||||
|
||||
let mut y = Vec::new();
|
||||
let mut fy = Vec::new();
|
||||
|
||||
let mut v = self.terms.clone();
|
||||
|
||||
v[index] = self.sum;
|
||||
|
||||
for term in v {
|
||||
let value = variable_arena
|
||||
.get(term)
|
||||
.map(|variable| variable.get_value())
|
||||
.unwrap();
|
||||
|
||||
y.push(value);
|
||||
|
||||
let value = variable_arena
|
||||
.get(term)
|
||||
.map(|variable| variable.get_message(self.id))
|
||||
.unwrap();
|
||||
|
||||
fy.push(value);
|
||||
}
|
||||
|
||||
self.internal_update(variable_arena, idx_term, y, fy, &a);
|
||||
}
|
||||
}
|
||||
|
||||
fn v_win(t: f32, e: f32) -> f32 {
|
||||
math::pdf(t - e) / math::cdf(t - e)
|
||||
}
|
||||
|
||||
fn w_win(t: f32, e: f32) -> f32 {
|
||||
let vwin = v_win(t, e);
|
||||
|
||||
vwin * (vwin + t - e)
|
||||
}
|
||||
|
||||
fn v_draw(t: f32, e: f32) -> f32 {
|
||||
(math::pdf(-e - t) - math::pdf(e - t)) / (math::cdf(e - t) - math::cdf(-e - t))
|
||||
}
|
||||
|
||||
fn w_draw(t: f32, e: f32) -> f32 {
|
||||
let vdraw = v_draw(t, e);
|
||||
let n = (vdraw * vdraw) + ((e - t) * math::pdf(e - t) + (e + t) * math::pdf(e + t));
|
||||
let d = math::cdf(e - t) - math::cdf(-e - t);
|
||||
|
||||
n / d
|
||||
}
|
||||
|
||||
pub struct TruncateFactor {
|
||||
id: usize,
|
||||
variable: VariableId,
|
||||
epsilon: f32,
|
||||
draw: bool,
|
||||
}
|
||||
|
||||
impl TruncateFactor {
|
||||
pub fn new(
|
||||
variable_arena: &mut VariableArena,
|
||||
id: usize,
|
||||
variable: VariableId,
|
||||
epsilon: f32,
|
||||
draw: bool,
|
||||
) -> TruncateFactor {
|
||||
if let Some(variable) = variable_arena.get_mut(variable) {
|
||||
variable.attach_factor(id);
|
||||
}
|
||||
|
||||
TruncateFactor {
|
||||
id,
|
||||
variable,
|
||||
epsilon,
|
||||
draw,
|
||||
}
|
||||
}
|
||||
|
||||
pub fn update(&self, variable_arena: &mut VariableArena) {
|
||||
let x = variable_arena
|
||||
.get(self.variable)
|
||||
.map(|variable| variable.get_value())
|
||||
.unwrap();
|
||||
let fx = variable_arena
|
||||
.get_mut(self.variable)
|
||||
.map(|variable| variable.get_message(self.id))
|
||||
.unwrap();
|
||||
|
||||
let c = x.pi - fx.pi;
|
||||
let d = x.tau - fx.tau;
|
||||
let sqrt_c = c.sqrt();
|
||||
|
||||
let t = d / sqrt_c;
|
||||
let e = self.epsilon * sqrt_c;
|
||||
|
||||
let (v, w) = if self.draw {
|
||||
(v_draw(t, e), w_draw(t, e))
|
||||
} else {
|
||||
(v_win(t, e), w_win(t, e))
|
||||
};
|
||||
|
||||
let m_w = 1.0 - w;
|
||||
|
||||
let gaussian = Gaussian::with_pi_tau(c / m_w, (d + sqrt_c * v) / m_w);
|
||||
|
||||
if let Some(variable) = variable_arena.get_mut(self.variable) {
|
||||
variable.update_value(self.id, gaussian);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@@ -1,10 +1,51 @@
|
||||
use std::ops;
|
||||
|
||||
#[derive(Clone, Copy)]
|
||||
pub struct Gaussian {
|
||||
pub pi: f32,
|
||||
pub tau: f32,
|
||||
}
|
||||
|
||||
impl Gaussian {
|
||||
pub fn new(pi: f32, tau: f32) -> Gaussian {
|
||||
pub fn new() -> Gaussian {
|
||||
Gaussian::with_pi_tau(0.0, 0.0)
|
||||
}
|
||||
|
||||
pub fn with_pi_tau(pi: f32, tau: f32) -> Gaussian {
|
||||
Gaussian { pi, tau }
|
||||
}
|
||||
|
||||
pub fn with_mu_sigma(mu: f32, sigma: f32) -> Gaussian {
|
||||
let pi = 1.0 / sigma.powi(2);
|
||||
|
||||
Gaussian::with_pi_tau(pi, pi * mu)
|
||||
}
|
||||
|
||||
pub fn mu(&self) -> f32 {
|
||||
if self.pi == 0.0 {
|
||||
0.0
|
||||
} else {
|
||||
self.tau / self.pi
|
||||
}
|
||||
}
|
||||
|
||||
pub fn sigma(&self) -> f32 {
|
||||
(1.0 / self.pi).sqrt()
|
||||
}
|
||||
}
|
||||
|
||||
impl ops::Mul<Gaussian> for Gaussian {
|
||||
type Output = Gaussian;
|
||||
|
||||
fn mul(self, rhs: Gaussian) -> Gaussian {
|
||||
Gaussian::with_pi_tau(self.pi + rhs.pi, self.tau + rhs.tau)
|
||||
}
|
||||
}
|
||||
|
||||
impl ops::Div<Gaussian> for Gaussian {
|
||||
type Output = Gaussian;
|
||||
|
||||
fn div(self, rhs: Gaussian) -> Gaussian {
|
||||
Gaussian::with_pi_tau(self.pi - rhs.pi, self.tau - rhs.tau)
|
||||
}
|
||||
}
|
||||
|
||||
196
src/lib.rs
196
src/lib.rs
@@ -1,9 +1,11 @@
|
||||
mod matrix;
|
||||
mod factor_graph;
|
||||
mod gaussian;
|
||||
mod math;
|
||||
mod matrix;
|
||||
|
||||
use matrix::Matrix;
|
||||
use factor_graph::*;
|
||||
use gaussian::Gaussian;
|
||||
use matrix::Matrix;
|
||||
|
||||
/// Default initial mean of ratings.
|
||||
const MU: f32 = 25.0;
|
||||
@@ -24,9 +26,9 @@ const DRAW_PROBABILITY: f32 = 0.10;
|
||||
const DELTA: f32 = 0.0001;
|
||||
|
||||
#[derive(Debug, PartialEq)]
|
||||
struct Rating {
|
||||
mu: f32,
|
||||
sigma: f32,
|
||||
pub struct Rating {
|
||||
pub mu: f32,
|
||||
pub sigma: f32,
|
||||
}
|
||||
|
||||
impl Default for Rating {
|
||||
@@ -38,42 +40,155 @@ impl Default for Rating {
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
fn _team_sizes(rating_groups: &[&[Rating]]) -> Vec<usize> {
|
||||
let mut team_sizes = Vec::new();
|
||||
|
||||
for group in rating_groups {
|
||||
let last = team_sizes.last().map(|v| *v).unwrap_or(0);
|
||||
|
||||
team_sizes.push(group.len() + last);
|
||||
}
|
||||
|
||||
team_sizes
|
||||
}
|
||||
|
||||
fn factor_graph_builders(rating_groups: &[&[Rating]]) {
|
||||
fn rate(rating_groups: &[&[Rating]]) {
|
||||
let flatten_ratings = rating_groups
|
||||
.iter()
|
||||
.flat_map(|group| group.iter())
|
||||
.collect::<Vec<_>>();
|
||||
|
||||
let flatten_weights = vec![1.0; flatten_ratings.len()].into_boxed_slice();
|
||||
|
||||
let size = flatten_ratings.len();
|
||||
let group_size = rating_groups.len();
|
||||
|
||||
let rating_vars = (0..size).map(|_| Variable::new()).collect::<Vec<_>>();
|
||||
let perf_vars = (0..size).map(|_| Variable::new()).collect::<Vec<_>>();
|
||||
let team_perf_vars = (0..group_size).map(|_| Variable::new()).collect::<Vec<_>>();
|
||||
let team_diff_vars = (0..group_size - 1).map(|_| Variable::new()).collect::<Vec<_>>();
|
||||
let tau_sqr = TAU.powi(2);
|
||||
let beta_sqr = BETA.powi(2);
|
||||
|
||||
let team_sizes = _team_sizes(rating_groups);
|
||||
}
|
||||
let mut variable_arena = VariableArena::new();
|
||||
|
||||
fn rate(rating_groups: &[&[Rating]]) {
|
||||
let ranks = (0..rating_groups.len()).collect::<Vec<_>>();
|
||||
let weights = vec![1.0; rating_groups.len()];
|
||||
let min_delta = DELTA;
|
||||
let mut ss = Vec::new();
|
||||
let mut ps = Vec::new();
|
||||
let mut ts = Vec::new();
|
||||
let mut ds = Vec::new();
|
||||
|
||||
for _ in 0..size {
|
||||
ss.push(variable_arena.create());
|
||||
ps.push(variable_arena.create());
|
||||
ts.push(variable_arena.create());
|
||||
}
|
||||
|
||||
for _ in 0..size - 1 {
|
||||
ds.push(variable_arena.create());
|
||||
}
|
||||
|
||||
let mut factor_id = 0;
|
||||
|
||||
let mut skill = Vec::new();
|
||||
|
||||
for (i, rating) in flatten_ratings.iter().enumerate() {
|
||||
let variable = ss[i];
|
||||
let gaussian = Gaussian::with_mu_sigma(rating.mu, (rating.sigma.powi(2) + tau_sqr).sqrt());
|
||||
|
||||
skill.push(PriorFactor::new(
|
||||
&mut variable_arena,
|
||||
factor_id,
|
||||
variable,
|
||||
gaussian,
|
||||
));
|
||||
|
||||
factor_id += 1;
|
||||
}
|
||||
|
||||
let mut skill_to_perf = Vec::new();;
|
||||
|
||||
for i in 0..size {
|
||||
let mean = ss[i];
|
||||
let value = ps[i];
|
||||
|
||||
skill_to_perf.push(LikelihoodFactor::new(
|
||||
&mut variable_arena,
|
||||
factor_id,
|
||||
mean,
|
||||
value,
|
||||
beta_sqr,
|
||||
));
|
||||
|
||||
factor_id += 1;
|
||||
}
|
||||
|
||||
let mut perf_to_team = Vec::new();;
|
||||
|
||||
for i in 0..size {
|
||||
perf_to_team.push(SumFactor::new(
|
||||
&mut variable_arena,
|
||||
factor_id,
|
||||
ts[i],
|
||||
vec![ps[i]],
|
||||
vec![1.0],
|
||||
));
|
||||
|
||||
factor_id += 1;
|
||||
}
|
||||
|
||||
let mut team_diff = Vec::new();;
|
||||
|
||||
for i in 0..size - 1 {
|
||||
team_diff.push(SumFactor::new(
|
||||
&mut variable_arena,
|
||||
factor_id,
|
||||
ds[i],
|
||||
vec![ts[i], ts[i + 1]],
|
||||
vec![1.0, -1.0],
|
||||
));
|
||||
|
||||
factor_id += 1;
|
||||
}
|
||||
|
||||
let mut trunc = Vec::new();
|
||||
|
||||
for i in 0..size - 1 {
|
||||
trunc.push(TruncateFactor::new(
|
||||
&mut variable_arena,
|
||||
factor_id,
|
||||
ds[i],
|
||||
DELTA,
|
||||
false,
|
||||
));
|
||||
|
||||
factor_id += 1;
|
||||
}
|
||||
|
||||
for factor in &skill {
|
||||
factor.start(&mut variable_arena);
|
||||
}
|
||||
|
||||
for factor in &skill_to_perf {
|
||||
factor.update_value(&mut variable_arena);
|
||||
}
|
||||
|
||||
for factor in &perf_to_team {
|
||||
factor.update_sum(&mut variable_arena);
|
||||
}
|
||||
|
||||
for factor in &team_diff {
|
||||
factor.update_sum(&mut variable_arena);
|
||||
}
|
||||
|
||||
for factor in &trunc {
|
||||
factor.update(&mut variable_arena);
|
||||
}
|
||||
|
||||
for factor in &team_diff {
|
||||
factor.update_term(&mut variable_arena, 0);
|
||||
factor.update_term(&mut variable_arena, 1);
|
||||
}
|
||||
|
||||
for factor in &perf_to_team {
|
||||
factor.update_term(&mut variable_arena, 0);
|
||||
}
|
||||
|
||||
for factor in &skill_to_perf {
|
||||
factor.update_mean(&mut variable_arena);
|
||||
}
|
||||
|
||||
for i in 0..size {
|
||||
let value = variable_arena
|
||||
.get(ss[i])
|
||||
.map(|variable| variable.get_value())
|
||||
.unwrap();
|
||||
|
||||
let mu = value.mu();
|
||||
let sigma = value.sigma();
|
||||
|
||||
println!("player={}, mu={}, sigma={}", i, mu, sigma);
|
||||
}
|
||||
}
|
||||
|
||||
fn quality(rating_groups: &[&[Rating]]) -> f32 {
|
||||
@@ -151,4 +266,21 @@ mod tests {
|
||||
|
||||
assert_eq!(quality(&[&[alice], &[bob]]), 0.41614607);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_rate_1vs1() {
|
||||
let alice = Rating {
|
||||
mu: 25.0,
|
||||
sigma: SIGMA,
|
||||
};
|
||||
|
||||
let bob = Rating {
|
||||
mu: 30.0,
|
||||
sigma: SIGMA,
|
||||
};
|
||||
|
||||
rate(&[&[alice], &[bob]]);
|
||||
|
||||
assert_eq!(true, false);
|
||||
}
|
||||
}
|
||||
|
||||
30
src/math.rs
Normal file
30
src/math.rs
Normal file
@@ -0,0 +1,30 @@
|
||||
use std::f32;
|
||||
|
||||
fn erfc(x: f32) -> f32 {
|
||||
let z = x.abs();
|
||||
let t = 1.0 / (1.0 + z / 2.0);
|
||||
let r = t
|
||||
* (-z * z - 1.26551223
|
||||
+ t * (1.00002368
|
||||
+ t * (0.37409196
|
||||
+ t * (0.09678418
|
||||
+ t * (-0.18628806
|
||||
+ t * (0.27886807
|
||||
+ t * (-1.13520398
|
||||
+ t * (1.48851587 + t * (-0.82215223 + t * 0.17087277)))))))))
|
||||
.exp();
|
||||
|
||||
if x < 0.0 {
|
||||
2.0 - r
|
||||
} else {
|
||||
r
|
||||
}
|
||||
}
|
||||
|
||||
pub fn cdf(x: f32) -> f32 {
|
||||
0.5 * erfc(-x / 2.0f32.sqrt())
|
||||
}
|
||||
|
||||
pub fn pdf(x: f32) -> f32 {
|
||||
1.0 / (2.0 * f32::consts::PI).sqrt() * (-((x / 1.0).powi(2) / 2.0)).exp()
|
||||
}
|
||||
Reference in New Issue
Block a user