Files
kickscore/examples/basic.rs
2020-02-20 09:19:11 +01:00

59 lines
1.9 KiB
Rust

extern crate openblas_src;
use kickscore as ks;
fn main() {
let mut model = ks::BinaryModel::new(ks::BinaryModelObservation::Probit);
// Spike's skill does not change over time.
let k_spike = ks::kernel::Constant::new(0.5);
// Tom's skill changes over time, with "jagged" (non-smooth) dynamics.
let k_tom = ks::kernel::Exponential::new(1.0, 1.0);
// Jerry's skill has a constant offset and smooth dynamics.
let k_jerry: Vec<Box<dyn ks::Kernel>> = vec![
Box::new(ks::kernel::Constant::new(1.0)),
Box::new(ks::kernel::Matern52::new(0.5, 1.0)),
];
// Now we are ready to add the items in the model.
model.add_item("Spike", Box::new(k_spike));
model.add_item("Tom", Box::new(k_tom));
model.add_item("Jerry", Box::new(k_jerry));
// At first, Jerry beats Tom a couple of times.
model.observe(&["Jerry"], &["Tom"], 0.0);
model.observe(&["Jerry"], &["Tom"], 0.9);
// Then, Tom beats Spike, and then Jerry.
model.observe(&["Tom"], &["Spike"], 1.7);
model.observe(&["Tom"], &["Jerry"], 2.1);
// Finally, Jerry beats Tom, and then Tom + Spike.
model.observe(&["Jerry"], &["Tom"], 3.0);
model.observe(&["Jerry"], &["Tom", "Spike"], 3.5);
model.fit();
// We can predict a future outcome...
let (p_win, _p_los) = model.probabilities(&[&"Jerry"], &[&"Tom"], 4.0);
println!(
"Chances that Jerry beats Tom at t = 4.0: {:.1}%",
100.0 * p_win
);
// ... or simulate what could have happened in the past.
let (p_win, _p_los) = model.probabilities(&[&"Jerry"], &[&"Tom"], 2.0);
println!(
"Chances that Jerry beats Tom at t = 2.0: {:.1}%",
100.0 * p_win
);
let (p_win, _p_los) = model.probabilities(&[&"Jerry"], &[&"Tom"], -1.0);
println!(
"Chances that Jerry beats Tom at t = -1.0: {:.1}%",
100.0 * p_win
);
}