Files
kickscore/src/kernel/matern32.rs

78 lines
1.6 KiB
Rust

use ndarray::prelude::*;
use super::Kernel;
#[derive(Clone)]
pub struct Matern32 {
var: f64,
l_scale: f64,
lambda: f64,
}
impl Matern32 {
pub fn new(var: f64, l_scale: f64) -> Self {
Matern32 {
var,
l_scale,
lambda: 3.0f64.sqrt() / l_scale,
}
}
}
impl Kernel for Matern32 {
fn k_mat(&self, _ts1: &[f64], _ts2: Option<&[f64]>) -> ArrayD<f64> {
unimplemented!();
}
fn k_diag(&self, ts: &[f64]) -> Array1<f64> {
Array1::ones(ts.len()) * self.var
}
fn order(&self) -> usize {
2
}
fn state_mean(&self, _t: f64) -> Array1<f64> {
Array1::zeros(2)
}
fn state_cov(&self, _t: f64) -> Array2<f64> {
let a = self.lambda;
array![[1.0, 0.0], [0.0, a * a]] * self.var
}
fn measurement_vector(&self) -> Array1<f64> {
array![1.0, 0.0]
}
fn feedback(&self) -> Array2<f64> {
let a = self.lambda;
array![[0.0, 1.0], [-a.powi(2), -2.0 * a]]
}
fn transition(&self, t0: f64, t1: f64) -> Array2<f64> {
let d = t1 - t0;
let a = self.lambda;
let ba = array![[d * a + 1.0, d], [-d * a * a, 1.0 - d * a]];
(-d * a).exp() * ba
}
fn noise_cov(&self, t0: f64, t1: f64) -> Array2<f64> {
let d = t1 - t0;
let a = self.lambda;
let da = d * a;
let c = (-2.0 * da).exp();
let x11 = 1.0 - c * (2.0 * da * da + 2.0 * da + 1.0);
let x12 = c * (2.0 * da * da * a);
let x22 = a * a * (1.0 - c * (2.0 * da * da - 2.0 * da + 1.0));
self.var * array![[x11, x12], [x12, x22]]
}
}