More test and fix a bug

This commit is contained in:
2021-01-04 14:00:59 +01:00
parent 0345052a66
commit b7cc1a9b9f

View File

@@ -50,8 +50,14 @@ pub trait Kernel {
}
impl Kernel for Vec<Box<dyn Kernel>> {
fn k_mat(&self, _ts1: &[f64], _ts2: Option<&[f64]>) -> Array2<f64> {
unimplemented!();
fn k_mat(&self, ts1: &[f64], ts2: Option<&[f64]>) -> Array2<f64> {
let n = ts1.len();
let m = ts2.map_or(n, |ts| ts.len());
self.iter()
.fold(Array2::zeros((n, m)), |k_diag: Array2<f64>, kernel| {
k_diag + kernel.k_mat(ts1, ts2)
})
}
fn k_diag(&self, ts: &[f64]) -> Array1<f64> {
@@ -82,23 +88,23 @@ impl Kernel for Vec<Box<dyn Kernel>> {
let dim = data
.iter()
.fold((0, 0), |(w, h), m| (w + m.ncols(), h + m.nrows()));
.fold((0, 0), |(h, w), m| (h + m.nrows(), w + m.ncols()));
let mut cov = Array2::zeros(dim);
let mut block = Array2::zeros(dim);
let mut r_d = 0;
let mut c_d = 0;
for m in data {
for ((r, c), v) in m.indexed_iter() {
cov[(r + r_d, c + c_d)] = *v;
block[(r + r_d, c + c_d)] = *v;
}
r_d += m.nrows();
c_d += m.ncols();
}
cov
block
}
fn measurement_vector(&self) -> Array1<f64> {
@@ -118,23 +124,23 @@ impl Kernel for Vec<Box<dyn Kernel>> {
let dim = data
.iter()
.fold((0, 0), |(w, h), m| (w + m.ncols(), h + m.nrows()));
.fold((0, 0), |(h, w), m| (h + m.nrows(), w + m.ncols()));
let mut feedback = Array2::zeros(dim);
let mut block = Array2::zeros(dim);
let mut r_d = 0;
let mut c_d = 0;
for m in data {
for ((r, c), v) in m.indexed_iter() {
feedback[(r + r_d, c + c_d)] = *v;
block[(r + r_d, c + c_d)] = *v;
}
r_d += m.nrows();
c_d += m.ncols();
}
feedback
block
}
fn transition(&self, t0: f64, t1: f64) -> Array2<f64> {
@@ -145,23 +151,50 @@ impl Kernel for Vec<Box<dyn Kernel>> {
let dim = data
.iter()
.fold((0, 0), |(w, h), m| (w + m.ncols(), h + m.nrows()));
.fold((0, 0), |(h, w), m| (h + m.nrows(), w + m.ncols()));
let mut transition = Array2::zeros(dim);
let mut block = Array2::zeros(dim);
let mut r_d = 0;
let mut c_d = 0;
for m in data {
for ((r, c), v) in m.indexed_iter() {
transition[(r + r_d, c + c_d)] = *v;
block[(r + r_d, c + c_d)] = *v;
}
r_d += m.nrows();
c_d += m.ncols();
}
transition
block
}
fn noise_effect(&self) -> Array2<f64> {
let data = self
.iter()
.map(|kernel| kernel.noise_effect())
.collect::<Vec<_>>();
let dim = data
.iter()
.fold((0, 0), |(h, w), m| (h + m.nrows(), w + m.ncols()));
let mut block = Array2::zeros(dim);
let mut r_d = 0;
let mut c_d = 0;
for m in data {
for ((r, c), v) in m.indexed_iter() {
block[(r + r_d, c + c_d)] = *v;
}
r_d += m.nrows();
c_d += m.ncols();
}
block
}
fn noise_cov(&self, t0: f64, t1: f64) -> Array2<f64> {
@@ -172,22 +205,108 @@ impl Kernel for Vec<Box<dyn Kernel>> {
let dim = data
.iter()
.fold((0, 0), |(w, h), m| (w + m.ncols(), h + m.nrows()));
.fold((0, 0), |(h, w), m| (h + m.nrows(), w + m.ncols()));
let mut cov = Array2::zeros(dim);
let mut block = Array2::zeros(dim);
let mut r_d = 0;
let mut c_d = 0;
for m in data {
for ((r, c), v) in m.indexed_iter() {
cov[(r + r_d, c + c_d)] = *v;
block[(r + r_d, c + c_d)] = *v;
}
r_d += m.nrows();
c_d += m.ncols();
}
cov
block
}
}
#[cfg(test)]
mod tests {
extern crate intel_mkl_src;
use approx::assert_abs_diff_eq;
use rand::{distributions::Standard, thread_rng, Rng};
use super::*;
#[test]
fn test_kernel_matrix() {
let kernel: Vec<Box<dyn Kernel>> = vec![
Box::new(Matern32::new(1.5, 0.7)),
Box::new(Matern52::new(0.2, 5.0)),
];
let ts = [1.26, 1.46, 2.67];
assert_abs_diff_eq!(
kernel.k_mat(&ts, None),
array![
[1.7, 1.5667546855502472, 0.3933043131476467],
[1.5667546855502472, 1.7, 0.4908539038626858],
[0.3933043131476467, 0.4908539038626858, 1.7]
]
);
}
#[test]
fn test_kernel_diag() {
let kernel: Vec<Box<dyn Kernel>> = vec![
Box::new(Matern32::new(1.5, 0.7)),
Box::new(Matern52::new(0.2, 5.0)),
];
let ts: Vec<_> = thread_rng()
.sample_iter::<f64, _>(Standard)
.take(10)
.map(|x| x * 10.0)
.collect();
assert_eq!(kernel.k_mat(&ts, None).diag(), kernel.k_diag(&ts));
}
#[test]
fn test_kernel_order() {
let kernel: Vec<Box<dyn Kernel>> = vec![
Box::new(Matern32::new(1.5, 0.7)),
Box::new(Matern52::new(0.2, 5.0)),
];
let m = kernel.order();
assert_eq!(kernel.state_mean(0.0).shape(), &[m]);
assert_eq!(kernel.state_cov(0.0).shape(), &[m, m]);
assert_eq!(kernel.measurement_vector().shape(), &[m]);
assert_eq!(kernel.feedback().shape(), &[m, m]);
assert_eq!(kernel.noise_effect().shape()[0], m);
assert_eq!(kernel.transition(0.0, 1.0).shape(), &[m, m]);
assert_eq!(kernel.noise_cov(0.0, 1.0).shape(), &[m, m]);
}
#[test]
fn test_ssm_variance() {
let kernel: Vec<Box<dyn Kernel>> = vec![
Box::new(Matern32::new(1.5, 0.7)),
Box::new(Matern52::new(0.2, 5.0)),
];
let ts: Vec<_> = thread_rng()
.sample_iter::<f64, _>(Standard)
.take(10)
.map(|x| x * 10.0)
.collect();
let h = kernel.measurement_vector();
let vars = ts
.iter()
.map(|t| h.dot(&kernel.state_cov(*t)).dot(&h))
.collect::<Vec<_>>();
assert_abs_diff_eq!(Array::from(vars), kernel.k_diag(&ts));
}
}