Added structure for diff model.
This commit is contained in:
100
src/model/difference.rs
Normal file
100
src/model/difference.rs
Normal file
@@ -0,0 +1,100 @@
|
||||
use std::f64;
|
||||
|
||||
use crate::fitter::RecursiveFitter;
|
||||
use crate::item::Item;
|
||||
use crate::kernel::Kernel;
|
||||
use crate::observation::*;
|
||||
use crate::storage::Storage;
|
||||
|
||||
#[derive(Clone, Copy)]
|
||||
pub enum DifferenceModelFitMethod {
|
||||
Ep,
|
||||
Kl,
|
||||
}
|
||||
|
||||
pub struct DifferenceModel {
|
||||
storage: Storage,
|
||||
last_t: f64,
|
||||
observations: Vec<GaussianObservation>,
|
||||
last_method: Option<DifferenceModelFitMethod>,
|
||||
var: f64,
|
||||
}
|
||||
|
||||
impl DifferenceModel {
|
||||
pub fn new(var: f64) -> Self {
|
||||
DifferenceModel {
|
||||
storage: Storage::new(),
|
||||
last_t: f64::NEG_INFINITY,
|
||||
observations: Vec::new(),
|
||||
last_method: None,
|
||||
var, // default = 1.0
|
||||
}
|
||||
}
|
||||
|
||||
pub fn add_item(&mut self, name: &str, kernel: Box<dyn Kernel>) {
|
||||
if self.storage.contains_key(name) {
|
||||
panic!("item '{}' already added", name);
|
||||
}
|
||||
|
||||
self.storage.insert(
|
||||
name.to_string(),
|
||||
Item::new(Box::new(RecursiveFitter::new(kernel))),
|
||||
);
|
||||
}
|
||||
|
||||
pub fn contains_item(&self, name: &str) -> bool {
|
||||
self.storage.contains_key(name)
|
||||
}
|
||||
|
||||
pub fn item_score(&self, name: &str, t: f64) -> (f64, f64) {
|
||||
let id = self.storage.get_id(name);
|
||||
let (ms, vs) = self.storage.item(id).fitter.predict(&[t]);
|
||||
|
||||
(ms[0], vs[0])
|
||||
}
|
||||
|
||||
pub fn observe(
|
||||
&mut self,
|
||||
winners: &[&str],
|
||||
losers: &[&str],
|
||||
diff: f64,
|
||||
t: f64,
|
||||
var: Option<f64>,
|
||||
) {
|
||||
if t < self.last_t {
|
||||
panic!("observations must be added in chronological order");
|
||||
}
|
||||
|
||||
let var = var.unwrap_or_else(|| self.var);
|
||||
|
||||
let mut elems = self.process_items(winners, 1.0);
|
||||
elems.extend(self.process_items(losers, -1.0));
|
||||
|
||||
let obs = GaussianObservation::new(&mut self.storage, &elems, diff, t, var);
|
||||
|
||||
self.observations.push(obs);
|
||||
|
||||
self.last_t = t;
|
||||
}
|
||||
|
||||
pub fn fit(&mut self) -> bool {
|
||||
unimplemented!();
|
||||
}
|
||||
|
||||
pub fn probabilities(
|
||||
&mut self,
|
||||
team_1: &[&str],
|
||||
team_2: &[&str],
|
||||
t: f64,
|
||||
margin: Option<f64>,
|
||||
) -> (f64, f64, f64) {
|
||||
unimplemented!();
|
||||
}
|
||||
|
||||
fn process_items(&self, items: &[&str], sign: f64) -> Vec<(usize, f64)> {
|
||||
items
|
||||
.iter()
|
||||
.map(|key| (self.storage.get_id(&key), sign))
|
||||
.collect()
|
||||
}
|
||||
}
|
||||
Reference in New Issue
Block a user