Even closer to get example "basic" up and running!
This commit is contained in:
@@ -4,7 +4,10 @@ pub use recursive::RecursiveFitter;
|
||||
|
||||
pub trait Fitter {
|
||||
fn add_sample(&mut self, t: f64) -> usize;
|
||||
|
||||
fn allocate(&mut self);
|
||||
fn is_allocated(&self) -> bool;
|
||||
|
||||
fn fit(&mut self);
|
||||
|
||||
fn vs(&self, idx: usize) -> f64;
|
||||
|
||||
@@ -1,5 +1,6 @@
|
||||
use ndarray::prelude::*;
|
||||
use ndarray::stack;
|
||||
use ndarray_linalg::Inverse;
|
||||
|
||||
use crate::kernel::Kernel;
|
||||
|
||||
@@ -15,15 +16,15 @@ pub struct RecursiveFitter {
|
||||
xs: ArrayD<f64>,
|
||||
is_fitted: bool,
|
||||
h: Array1<f64>,
|
||||
i: ArrayD<f64>,
|
||||
i: Array2<f64>,
|
||||
a: Vec<Array2<f64>>,
|
||||
q: Vec<Array2<f64>>,
|
||||
m_p: ArrayD<f64>,
|
||||
p_p: ArrayD<f64>,
|
||||
m_f: ArrayD<f64>,
|
||||
p_f: ArrayD<f64>,
|
||||
m_s: ArrayD<f64>,
|
||||
p_s: ArrayD<f64>,
|
||||
m_p: Vec<Array1<f64>>,
|
||||
p_p: Vec<Array2<f64>>,
|
||||
m_f: Vec<Array1<f64>>,
|
||||
p_f: Vec<Array2<f64>>,
|
||||
m_s: Vec<Array1<f64>>,
|
||||
p_s: Vec<Array2<f64>>,
|
||||
}
|
||||
|
||||
impl RecursiveFitter {
|
||||
@@ -41,15 +42,15 @@ impl RecursiveFitter {
|
||||
xs: Array::zeros(0).into_dyn(),
|
||||
is_fitted: true,
|
||||
h,
|
||||
i: Array::eye(m).into_dyn(),
|
||||
i: Array::eye(m),
|
||||
a: Vec::new(),
|
||||
q: Vec::new(),
|
||||
m_p: Array::zeros((0, m)).into_dyn(),
|
||||
p_p: Array::zeros((0, m, m)).into_dyn(),
|
||||
m_f: Array::zeros((0, m)).into_dyn(),
|
||||
p_f: Array::zeros((0, m, m)).into_dyn(),
|
||||
m_s: Array::zeros((0, m)).into_dyn(),
|
||||
p_s: Array::zeros((0, m, m)).into_dyn(),
|
||||
m_p: Vec::new(),
|
||||
p_p: Vec::new(),
|
||||
m_f: Vec::new(),
|
||||
p_f: Vec::new(),
|
||||
m_s: Vec::new(),
|
||||
p_s: Vec::new(),
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -81,43 +82,19 @@ impl Fitter for RecursiveFitter {
|
||||
self.xs = stack![Axis(0), self.xs, zeros];
|
||||
|
||||
// Initialize the predictive, filtering and smoothing distributions.
|
||||
let mean = self
|
||||
.ts_new
|
||||
.iter()
|
||||
.flat_map(|t| self.kernel.state_mean(*t).to_vec().into_iter())
|
||||
.collect::<Vec<f64>>();
|
||||
for t in &self.ts_new {
|
||||
let mean = self.kernel.state_mean(*t);
|
||||
|
||||
let mean = Array::from_shape_vec((self.ts_new.len(), self.kernel.order()), mean)
|
||||
.expect("failed to create mean matrix")
|
||||
.into_dyn();
|
||||
self.m_p.push(mean.clone());
|
||||
self.m_f.push(mean.clone());
|
||||
self.m_s.push(mean);
|
||||
|
||||
let cov = self
|
||||
.ts_new
|
||||
.iter()
|
||||
.flat_map(|t| {
|
||||
self.kernel
|
||||
.state_cov(*t)
|
||||
.iter()
|
||||
.cloned()
|
||||
.collect::<Vec<f64>>()
|
||||
})
|
||||
.collect::<Vec<f64>>();
|
||||
let cov = self.kernel.state_cov(*t);
|
||||
|
||||
let cov = Array3::from_shape_vec(
|
||||
(self.ts_new.len(), self.kernel.order(), self.kernel.order()),
|
||||
cov,
|
||||
)
|
||||
.expect("failed to create cov matrix")
|
||||
.into_dyn();
|
||||
|
||||
self.m_p = stack![Axis(0), self.m_p, mean];
|
||||
self.p_p = stack![Axis(0), self.p_p, cov];
|
||||
|
||||
self.m_f = stack![Axis(0), self.m_f, mean];
|
||||
self.p_f = stack![Axis(0), self.p_f, cov];
|
||||
|
||||
self.m_s = stack![Axis(0), self.m_s, mean];
|
||||
self.p_s = stack![Axis(0), self.p_s, cov];
|
||||
self.p_p.push(cov.clone());
|
||||
self.p_f.push(cov.clone());
|
||||
self.p_s.push(cov);
|
||||
}
|
||||
|
||||
// Compute the new transition and noise covariance matrices.
|
||||
for i in (self.ts.len() - n_new)..self.ts.len() {
|
||||
@@ -139,8 +116,80 @@ impl Fitter for RecursiveFitter {
|
||||
self.ts_new.clear();
|
||||
}
|
||||
|
||||
fn is_allocated(&self) -> bool {
|
||||
self.ts_new.is_empty()
|
||||
}
|
||||
|
||||
fn fit(&mut self) {
|
||||
todo!();
|
||||
if !self.is_allocated() {
|
||||
// raise RuntimeError("new data since last call to `allocate()`")
|
||||
}
|
||||
|
||||
if self.ts.is_empty() {
|
||||
self.is_fitted = true;
|
||||
|
||||
return;
|
||||
}
|
||||
|
||||
// Forward pass (Kalman filter).
|
||||
for i in 0..self.ts.len() {
|
||||
if i > 0 {
|
||||
self.m_p[i] = self.a[i - 1].dot(&self.m_f[i - 1]);
|
||||
self.p_p[i] =
|
||||
self.a[i - 1].dot(&self.p_f[i - 1]).dot(&self.a[i - 1].t()) + &self.q[i - 1];
|
||||
}
|
||||
|
||||
// These are slightly modified equations to work with tau and nu.
|
||||
let k = self.p_p[i].dot(&self.h)
|
||||
/ (1.0 + self.xs[i] * self.h.dot(&self.p_p[i]).dot(&self.h));
|
||||
|
||||
let k = Array1::from(k);
|
||||
|
||||
self.m_f[i] =
|
||||
(&self.m_p[i] + &k) * (&self.ns[i] - &self.xs[i] * &self.h.dot(&self.m_p[i]));
|
||||
|
||||
// Covariance matrix is computed using the Joseph form.
|
||||
let outer = (self.xs[i] * &k)
|
||||
.iter()
|
||||
.flat_map(|a| self.h.iter().map(move |b| a * b))
|
||||
.collect::<Vec<f64>>();
|
||||
|
||||
let outer = Array::from_shape_vec((self.h.len(), self.h.len()), outer)
|
||||
.expect("failed to create outer matrix");
|
||||
|
||||
let z = &self.i - &outer;
|
||||
|
||||
let outer = k
|
||||
.iter()
|
||||
.flat_map(|a| k.iter().map(move |b| a * b))
|
||||
.collect::<Vec<f64>>();
|
||||
|
||||
let outer = Array::from_shape_vec((self.h.len(), self.h.len()), outer)
|
||||
.expect("failed to create outer matrix");
|
||||
|
||||
self.p_f[i] = z.dot(&self.p_p[i]).dot(&z.t()) + self.xs[i] * outer;
|
||||
}
|
||||
|
||||
// Backward pass (RTS smoother).
|
||||
for i in (0..self.ts.len()).rev() {
|
||||
if i == self.ts.len() - 1 {
|
||||
self.m_s[i] = self.m_f[i].clone();
|
||||
self.p_s[i] = self.p_f[i].clone();
|
||||
} else {
|
||||
let g = self.a[i]
|
||||
.dot(&self.p_f[i])
|
||||
.dot(&self.p_p[i + 1].inv().expect("failed to inverse matrix"));
|
||||
|
||||
self.m_s[i] = &self.m_f[i] + &g.dot(&(&self.m_s[i + 1] - &self.m_p[i + 1]));
|
||||
self.p_s[i] =
|
||||
&self.p_f[i] + &g.dot(&(&self.p_s[i + 1] - &self.p_p[i + 1])).dot(&g.t());
|
||||
}
|
||||
|
||||
self.ms[i] = self.h.dot(&self.m_s[i]);
|
||||
self.vs[i] = self.h.dot(&self.p_s[i]).dot(&self.h);
|
||||
}
|
||||
|
||||
self.is_fitted = true;
|
||||
}
|
||||
|
||||
fn vs(&self, idx: usize) -> f64 {
|
||||
|
||||
27
src/utils.rs
27
src/utils.rs
@@ -38,7 +38,7 @@ const QS: [f64; 6] = [
|
||||
fn normcdf(x: f64) -> f64 {
|
||||
// If X ~ N(0,1), returns P(X < x).
|
||||
// erfc(-x / SQRT2) / 2.0
|
||||
|
||||
// https://docs.rs/statrs/0.12.0/statrs/function/erf/fn.erfc.html
|
||||
todo!();
|
||||
}
|
||||
|
||||
@@ -85,29 +85,4 @@ pub fn logphi(z: f64) -> (f64, f64) {
|
||||
|
||||
(res, dres)
|
||||
}
|
||||
|
||||
/*
|
||||
if z * z < 0.0492:
|
||||
# First case: z close to zero.
|
||||
coef = -z / SQRT2PI
|
||||
val = 0
|
||||
for c in CS:
|
||||
val = coef * (c + val)
|
||||
res = -2 * val - log(2)
|
||||
dres = exp(-(z * z) / 2 - res) / SQRT2PI
|
||||
elif z < -11.3137:
|
||||
# Second case: z very small.
|
||||
num = 0.5641895835477550741
|
||||
for r in RS:
|
||||
num = -z * num / SQRT2 + r
|
||||
den = 1.0
|
||||
for q in QS:
|
||||
den = -z * den / SQRT2 + q
|
||||
res = log(num / (2 * den)) - (z * z) / 2
|
||||
dres = abs(den / num) * sqrt(2.0 / pi)
|
||||
else:
|
||||
res = log(normcdf(z))
|
||||
dres = exp(-(z * z) / 2 - res) / SQRT2PI
|
||||
return res, dres
|
||||
*/
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user