Added wiener kernel

This commit is contained in:
2021-01-04 13:38:55 +01:00
parent b00f19af3c
commit 0345052a66
3 changed files with 301 additions and 3 deletions

View File

@@ -1,14 +1,18 @@
use ndarray::prelude::*; use ndarray::prelude::*;
mod affine;
mod constant; mod constant;
mod exponential; mod exponential;
mod matern32; mod matern32;
mod matern52; mod matern52;
mod wiener;
pub use affine::Affine;
pub use constant::Constant; pub use constant::Constant;
pub use exponential::Exponential; pub use exponential::Exponential;
pub use matern32::Matern32; pub use matern32::Matern32;
pub use matern52::Matern52; pub use matern52::Matern52;
pub use wiener::Wiener;
pub(crate) fn distance(ts1: &[f64], ts2: &[f64]) -> Array2<f64> { pub(crate) fn distance(ts1: &[f64], ts2: &[f64]) -> Array2<f64> {
let mut r = Array2::zeros((ts1.len(), ts2.len())); let mut r = Array2::zeros((ts1.len(), ts2.len()));
@@ -30,6 +34,7 @@ pub trait Kernel {
fn state_cov(&self, t: f64) -> Array2<f64>; fn state_cov(&self, t: f64) -> Array2<f64>;
fn measurement_vector(&self) -> Array1<f64>; fn measurement_vector(&self) -> Array1<f64>;
fn feedback(&self) -> Array2<f64>; fn feedback(&self) -> Array2<f64>;
fn transition(&self, t0: f64, t1: f64) -> Array2<f64>;
fn noise_effect(&self) -> Array2<f64> { fn noise_effect(&self) -> Array2<f64> {
unimplemented!(); unimplemented!();
@@ -39,10 +44,8 @@ pub trait Kernel {
unimplemented!(); unimplemented!();
} }
fn transition(&self, t0: f64, t1: f64) -> Array2<f64>;
fn noise_cov(&self, _t0: f64, _t1: f64) -> Array2<f64> { fn noise_cov(&self, _t0: f64, _t1: f64) -> Array2<f64> {
todo!(); unimplemented!();
} }
} }

152
src/kernel/affine.rs Normal file
View File

@@ -0,0 +1,152 @@
use std::iter::FromIterator;
use ndarray::prelude::*;
use super::Kernel;
pub struct Affine {
var_offset: f64,
var_slope: f64,
t0: f64,
}
impl Affine {
pub fn new(var_offset: f64, var_slope: f64, t0: f64) -> Self {
Affine {
var_offset,
var_slope,
t0,
}
}
}
impl Kernel for Affine {
fn k_mat(&self, ts1: &[f64], ts2: Option<&[f64]>) -> Array2<f64> {
let ts2 = ts2.unwrap_or(ts1);
let mut r = Array2::zeros((ts1.len(), ts2.len()));
for (i, v1) in ts1.iter().enumerate() {
for (j, v2) in ts2.iter().enumerate() {
r[(i, j)] = (v1 - self.t0) * (v2 - self.t0);
}
}
(r * self.var_slope) + self.var_offset
}
fn k_diag(&self, ts: &[f64]) -> Array1<f64> {
let r = Array1::from_iter(ts.iter().map(|v| (v - self.t0).powi(2)));
(r * self.var_slope) + self.var_offset
}
fn order(&self) -> usize {
2
}
fn state_mean(&self, _t: f64) -> Array1<f64> {
array![0.0, 0.0]
}
fn state_cov(&self, t: f64) -> Array2<f64> {
let t = t - self.t0;
array![[t.powi(2), t], [t, 1.0]] * self.var_slope
+ array![[1.0, 0.0], [0.0, 0.0]] * self.var_offset
}
fn measurement_vector(&self) -> Array1<f64> {
array![1.0, 0.0]
}
fn feedback(&self) -> Array2<f64> {
array![[0.0, 1.0], [0.0, 0.0]]
}
fn noise_effect(&self) -> Array2<f64> {
array![[0.0], [1.0]]
}
fn transition(&self, t0: f64, t1: f64) -> Array2<f64> {
array![[1.0, t1 - t0], [0.0, 1.0]]
}
fn noise_cov(&self, _t0: f64, _t1: f64) -> Array2<f64> {
array![[0.0, 0.0], [0.0, 0.0]]
}
}
#[cfg(test)]
mod tests {
extern crate intel_mkl_src;
use approx::assert_abs_diff_eq;
use rand::{distributions::Standard, thread_rng, Rng};
use super::*;
#[test]
fn test_kernel_matrix() {
let kernel = Affine::new(0.0, 2.0, 0.0);
let ts = [1.26, 1.46, 2.67];
assert_abs_diff_eq!(
kernel.k_mat(&ts, None),
array![
[3.1752000000000002, 3.6792, 6.7284],
[3.6792, 4.263199999999999, 7.796399999999999],
[6.7284, 7.796399999999999, 14.2578]
]
);
}
#[test]
fn test_kernel_diag() {
let kernel = Affine::new(0.0, 2.0, 0.0);
let ts: Vec<_> = thread_rng()
.sample_iter::<f64, _>(Standard)
.take(10)
.map(|x| x * 10.0)
.collect();
assert_eq!(kernel.k_mat(&ts, None).diag(), kernel.k_diag(&ts));
}
#[test]
fn test_kernel_order() {
let kernel = Affine::new(0.0, 2.0, 0.0);
let m = kernel.order();
assert_eq!(kernel.state_mean(0.0).shape(), &[m]);
assert_eq!(kernel.state_cov(0.0).shape(), &[m, m]);
assert_eq!(kernel.measurement_vector().shape(), &[m]);
assert_eq!(kernel.feedback().shape(), &[m, m]);
assert_eq!(kernel.noise_effect().shape()[0], m);
assert_eq!(kernel.transition(0.0, 1.0).shape(), &[m, m]);
assert_eq!(kernel.noise_cov(0.0, 1.0).shape(), &[m, m]);
}
#[test]
fn test_ssm_variance() {
let kernel = Affine::new(0.0, 2.0, 0.0);
let ts: Vec<_> = thread_rng()
.sample_iter::<f64, _>(Standard)
.take(10)
.map(|x| x * 10.0)
.collect();
let h = kernel.measurement_vector();
let vars = ts
.iter()
.map(|t| h.dot(&kernel.state_cov(*t)).dot(&h))
.collect::<Vec<_>>();
assert_abs_diff_eq!(Array::from(vars), kernel.k_diag(&ts));
}
}

143
src/kernel/wiener.rs Normal file
View File

@@ -0,0 +1,143 @@
use std::iter::FromIterator;
use ndarray::prelude::*;
use super::Kernel;
pub struct Wiener {
var: f64,
t0: f64,
var_t0: f64,
}
impl Wiener {
pub fn new(var: f64, t0: f64, var_t0: f64) -> Self {
Wiener { var, t0, var_t0 }
}
}
impl Kernel for Wiener {
fn k_mat(&self, ts1: &[f64], ts2: Option<&[f64]>) -> Array2<f64> {
let ts2 = ts2.unwrap_or(ts1);
let mut r = Array2::zeros((ts1.len(), ts2.len()));
for (i, v1) in ts1.iter().enumerate() {
for (j, v2) in ts2.iter().enumerate() {
r[(i, j)] = if v1 < v2 { v1 - self.t0 } else { v2 - self.t0 };
}
}
(r * self.var) + self.var_t0
}
fn k_diag(&self, ts: &[f64]) -> Array1<f64> {
(Array1::from_iter(ts.iter().map(|v| v - self.t0)) * self.var) + self.var_t0
}
fn order(&self) -> usize {
1
}
fn state_mean(&self, _t: f64) -> Array1<f64> {
array![0.0]
}
fn state_cov(&self, t: f64) -> Array2<f64> {
array![[self.var * (t - self.t0) + self.var_t0]]
}
fn measurement_vector(&self) -> Array1<f64> {
array![1.0]
}
fn feedback(&self) -> Array2<f64> {
array![[0.0]]
}
fn noise_effect(&self) -> Array2<f64> {
array![[1.0]]
}
fn transition(&self, _t0: f64, _t1: f64) -> Array2<f64> {
array![[1.0]]
}
fn noise_cov(&self, t0: f64, t1: f64) -> Array2<f64> {
array![[self.var * (t1 - t0)]]
}
}
#[cfg(test)]
mod tests {
extern crate intel_mkl_src;
use approx::assert_abs_diff_eq;
use rand::{distributions::Standard, thread_rng, Rng};
use super::*;
#[test]
fn test_kernel_matrix() {
let kernel = Wiener::new(1.2, 0.0, 0.0);
let ts = [1.26, 1.46, 2.67];
assert_abs_diff_eq!(
kernel.k_mat(&ts, None),
array![
[1.512, 1.512, 1.512],
[1.512, 1.752, 1.752],
[1.512, 1.752, 3.2039999999999997]
]
);
}
#[test]
fn test_kernel_diag() {
let kernel = Wiener::new(1.2, 0.0, 0.0);
let ts: Vec<_> = thread_rng()
.sample_iter::<f64, _>(Standard)
.take(10)
.map(|x| x * 10.0)
.collect();
assert_eq!(kernel.k_mat(&ts, None).diag(), kernel.k_diag(&ts));
}
#[test]
fn test_kernel_order() {
let kernel = Wiener::new(1.2, 0.0, 0.0);
let m = kernel.order();
assert_eq!(kernel.state_mean(0.0).shape(), &[m]);
assert_eq!(kernel.state_cov(0.0).shape(), &[m, m]);
assert_eq!(kernel.measurement_vector().shape(), &[m]);
assert_eq!(kernel.feedback().shape(), &[m, m]);
assert_eq!(kernel.noise_effect().shape()[0], m);
assert_eq!(kernel.transition(0.0, 1.0).shape(), &[m, m]);
assert_eq!(kernel.noise_cov(0.0, 1.0).shape(), &[m, m]);
}
#[test]
fn test_ssm_variance() {
let kernel = Wiener::new(1.2, 0.0, 0.0);
let ts: Vec<_> = thread_rng()
.sample_iter::<f64, _>(Standard)
.take(10)
.map(|x| x * 10.0)
.collect();
let h = kernel.measurement_vector();
let vars = ts
.iter()
.map(|t| h.dot(&kernel.state_cov(*t)).dot(&h))
.collect::<Vec<_>>();
assert_abs_diff_eq!(Array::from(vars), kernel.k_diag(&ts));
}
}